Фундамент под оборудование


Пример расчета фундамента под оборудование

 

Рисунок 9 – Площадь подошвы фундамента

Данные для расчета.

Вес аппарата, кН Gм = 14,7;
Расстояние между осями фундаментных болтов, мм А = 1880 В = 1300;
Высота наземной части фундамента, мм Н1 = 100;
Глубина заложения фундамента, мм Н2 = 500
Нормативное давление на грунт, кПа Rн = 200;
Коэффициент уменьшения* α = 0,5;
Удельный вес бетона, кН/м3 γ = 20.

*Учитывают степень динамичности машин с помощью коэффициента «α», изменяющегося от 0,3 до 1. Чем выше степень динамичности, тем меньше значение коэффициента «α» (приложение В).

1. Фундамент не должен давать значительной осадки, что достигается, если фактическое давление на грунт Р, кПа, основания системы «аппарат + фундамент» будет меньше нормативного

Р = (Gм + Gф)/(α F) ≤ Rн , (45)

где Gм – вес фундамента:

V – объем фундамента, м3

Н – общая высота фундамента, м

Н = 100 + 500 = 600 мм = 0,6 м

   F – площадь фундамента, м2

F = (А + 2∆) (В + 2∆) (49)

  ∆ - припуск на каждую сторону, ∆ = 0,1 м

F = (1880 + 2∙0,1)(1300 + 2∙0,1) = 6,36 м2

V = 6,36∙0,6 = 3,8м3

Gф = 3,8∙20 = 76 кН

Р = (14,7 + 76)/0,5∙6,36 = 28,5 кН

28,5 ≤ 200

Условие выполняется.

2. Определяем возможное отклонение оси аппарата от оси фундамента – эксцентриситеты е и е1, которые не должны превышать 5% от соответствующей стороны фундамента

Из пропорций находим предельные эксцентриситеты е и е1, мм

100мм – 5мм

2080 – е

1500 – е1

е = 2080∙5/100 = 104мм

е1 = 1500∙5/100 = 75 мм

Расчет приспособлений для монтажа оборудования.

Расчет строп.

Стропы из стальных канатов применяются для соединения монтажных полиспастов с подъемно-транспортными средствами, якорями и строительными конструкциями, а также для строповки поднимаемого или перемещаемого оборудования и конструкций с подъемно-транспортными механизмами.

Для строповки тяжеловесного оборудования преимущественно используются инвентарные витые стропы, выполняемые в виде замкнутой петли, путем последовательной параллельной укладки перевитых между собой витков каната вокруг начального центрального витка. Эти стропы имеют ряд преимуществ: равномерность распределения нагрузки на все ветви, сокращение расхода каната, меньшая трудоемкость строповки. Технические данные рекомендуемых типов канатов приведены в приложении Г (таблица 1).

Канатные стропы рассчитываются в следующем порядке (рисунок 10).

1. Определяем натяжение в одной ветви стропа, кН:

(50)

где P – расчетное усилие, приложенное к стропу, без учета коэффициентов перегрузки и динамичности, кН;

m – общее количество ветвей стропа;

 - угол между направлением действия расчетного усилия и ветвью стропа, которым задаемся исходя из поперечных размеров поднимаемого оборудования и способа строповки (этот угол рекомендуется назначать не более 45⁰, имея ввиду, что с его увеличением усилие в ветви стропа резко возрастает).

2. Находим разрывное усилие в ветви стропа, кН:

(51)

где kз- коэффициент запаса прочности для стропа, в зависимости от типа стропа (приложении Г(таблица 2)).

3. По расчетному разрывному усилию, пользуясь таблицей 1.приложения Г, подбираем наиболее гибкий стальной канат и определяем его технические данные: тип и конструкцию, временное сопротивление разрыву, разрывное усилие и диаметр.

Рисунок 10. Расчетная схема.

Пример расчета.

Рассчитать стальной канат для стропа, применяемого при подъеме при подъеме горизонтального цилиндрического теплообменного аппарата массой Go=15000кг.

Решение.

1. Определить натяжение одной ветви стропа, задаваясь общим количеством ветвей m = 4 и углом наклона их =45⁰ к направлению действия расчетного усилия P.

2. Находим разрывное усилие в ветви стропа.

3. По найденному разрывному усилию, пользуясь приложением Г (таблица 1), подбираем канат типа ЛК-РО конструкции 6х36(1+7+7/7+14) о.с. (ГОСТ7668-80) с характеристика:

временное сопротивление разрыву, МПа…………………..1960

разрывное усилие, кН………………………………………….338

диаметр каната, мм………………………………………….....23,5

масса 1000м каната, кг………………………………………...2130

Расчет траверс.

В практике монтажа оборудования применяются траверсы двух видов – работающие на изгиб и на сжатие. Первые конструктивно более тяжелые, но обладают значительно меньшими высотными габаритами, что имеет существенное значение при подъеме оборудования в помещениях с ограниченной высотой, а также при недостаточных высотах подъема крюка грузоподъемного механизма.

Расчет траверс, работающих на изгиб.

1. Подсчитываем нагрузку, действующую на траверсу, кН

, (52)

где GO – масса поднимаемого груза, кг,

  kП – коэффициент перегрузки,  kП=1,1

  kД – коэффициент динамичности,  kД=1,1

2. Определяем изгибающий момент в траверсе,

(53)

где а – длина плеча траверсы, см.

3. Вычисляем требуемый момент сопротивления поперечного сечения траверсы, см3.

(54)

где m и R выбирают по приложению Г (таблицы 3 и 4).

Рисунок 11. Расчетная схема траверсы, работающей на изгиб.

4. Выбираем для траверсы сплошного сечения одиночный швеллер, двутавр или сплошную трубу, и по приложению Г (таблицы 5, 6, 7) определяем момент сопротивления WX, ближайший больший к WТР. В случае невозможности изготовления траверсы большого сечения при больших значениях WТР балки траверсы изготавливаются либо сквозного сечения из парных швеллеров или двутавров, а также из труб, усиленных элементами жесткости, либо, наконец, решетчатой конструкции.

Пример расчета.

Подобрать и рассчитать сечение балки траверсы, работающей на изгиб, для подъема ротора турбины массой GO =24тонны с расстоянием между стальными подвесками l = 4м (рисунок 11).

Решение.

1. Подсчитываем нагрузку, действующую на траверсу:

2. Определяем изгибающий момент в траверсе:

3. Вычисляем требуемый момент сопротивления поперечного сечения траверсы:

4. Выбираем по табличным данным конструкцию балки траверсы сквозного сечения, состоящую из двух двутавров, соединенных стальными мостиками на сварке.

5. Подбираем по таблице ГОСТ (приложение Г таблица 5) два двутавра №40 с =953 см3, определяем момент сопротивления сечения траверсы в целом:

> WТР=1624 см3

что удовлетворяет условию прочности расчетного сечения траверсы.

Page 2

1. ГОСТ Р 52857.1-2007 Сосуды и аппараты. Нормы и методы расчета на прочность. Общие требования.

2. ГОСТ Р52857.2-2007 Сосуды и аппараты. Нормы и методы расчета на прочность. Расчет цилиндрических и конических обечаек, выпуклых и плоских днищ и крышек.

3. ГОСТ Р 52857.4-2007 Сосуды и аппараты. Нормы и методы расчета на прочность. Расчет на прочность и герметичность фланцевых соединений.

4. Воронкин, Ю. Н. , Поздняков, Н. В. Методы профилактики и ремонта промышленного оборудования: Учебник.-М: Академия, 2010.

5. Яцков А.Д. Методика расчета монтажной и ремонтной оснастки:учебное пособие/А.Д. Яцков, Н.Ю. Холодилин, О.А. Холодилина. – Тамбов: Изд-во Тамб. гос. ун-та, 2008

6. Ящура А. И. Система технического обслуживания и ремонта общепромышленного оборудования: Справочник.-М.: Изд-во НЦ ЭНАС, 2009.- 360 с.: ил. ISBN5-93196-617-Х

7. Методические указания по выполнению дипломного проекта по специальности 15.02.01 Монтаж и техническая эксплуатация промышленного оборудования. Ю.Б. Фещенко [Электронный ресурс] Социальная сеть работников образования: https://nsportal.ru/lpm

8. Методические указания для выполнения контрольной работы для студентов - заочников образовательных учреждений среднего профессионального образования по специальности: 15.02.01 «Монтаж и техническая эксплуатация промышленного оборудования». И.М. Кизилова [Электронный ресурс]:  http://spokipk.kiredu.ru

9. Резьбовые и фланцевые соединения. Биргер И.А., Иосилевич Г.Б. [Электронный ресурс]  http://sci.sernam.ru

Приложение А.

Приложение Б

Приложение В.

Таблица 1. Значения коэффициента уменьшения.

                           Тип машины                                                           α

Таблица 2. Нормативное давление на грунт

Вид грунта кПа кгс/см2
Крупнообломочные грунты, щебень, гравий 500-600 5,0-6,0
Пески гравелистые и крупные 350-450 3,5-4,5
Пески средней крупности 250-350 2,5-3,5
Пески мелкие и пылеватые плотные 200-300 2,0-3,0
Пески средней плотности 100-200 1,0-2,0
Супеси твердые и пластичные 200-300 2,0-3,0
Суглинки твердые и пластичные 100-300 1,0-3,0
Глины твердые 300-600 3,0-6,0
Глины пластичные 100-300 1,0-3,0

При глубине заложения фундамента более 2,5 м нормативное давление увеличивается, а при менее 1 м —

Приложение Г

 Таблица 1.

Таблица 2.

Таблица 3.

Таблица 4.

Таблица 5.

Таблица 6.

Таблица 7.

Дата добавления: 2018-05-12; просмотров: 372; ЗАКАЗАТЬ РАБОТУ

studopedia.net

Расчет фундамента под оборудование пример

Статьи

Чем фундаменты под оборудование отличаются от всех прочих? Есть ли какие-то особенности у их конструкции? Какие материалы могут применяться?

В статье мы постараемся ответить на эти вопросы.

Тяжелое промышленное оборудование требовательно к основанию, на которое монтируется.

Отличия от фундаментов зданий

Действительно, почему промышленные фундаменты для станков должны чем-то отличаться от обычного основания для сарая?

Основных причины две.

  1. Фундамент под оборудование испытывает, как правило, не только статические, но и динамические нагрузки. Говоря проще, ему предстоит гасить вибрацию от вращения, колебаний или ударов подвижных частей станков.

Важный момент: при установке некоторых видов оборудования вблизи жилых строений или в прочих случаях, когда передача значительных вибраций почве нежелательна, монтируется так называемый виброизолированный фундамент.Ударная нагрузка гасится составными пружинами с противонаправленными витками внешней и внутренней частей или резиновыми вставками.

  1. Промышленное оборудование — это, среди прочего, смазки и прочие технологические жидкости. Порой они достаточно агрессивны; при этом попадание их в почву крайне нежелательно.

Отсюда — особые требования к:

  • Массе и, соответственно, размерам фундамента. Чем он массивнее — тем меньше амплитуда передающихся ему колебаний.
  • Прочности. Ударная нагрузка быстро разрушит материалы со слабой устойчивостью к механическим воздействиям.
  • Стойкости к агрессивным средам. Присутствие смазок, антифризов и т.д. уже упоминалось.
  • Точности размеров. Понятно, что ставить кузнечный молот или гильотинные ножницы на основание с перепадами высоты — значит гарантированно снизить их ресурс и ускорить разрушение самого фундамента: динамическая нагрузка будет распределена крайне неравномерно.

На фото — кузнечный молот с пятитонной ударной частью. Неравномерно распределенная нагрузка от удара способна разрушить самый прочный железобетон.

Исключения

Наряду с промышленным оборудованием, для которого характерны динамические нагрузки, существует огромное количество станков и машин, конструкция которых исключает ударные или эксцентрические воздействия на фундамент в процессе работы.

Типичный пример — паровой пресс для сушки дверных полотен под давлением после склейки фенолформальдегидной смолой. Несмотря на огромную массу подвижных частей, скорость их движения делает нагрузку на основание на протяжение всего производственного цикла статической.

Никаких особых требований к фундаменту, помимо устойчивости к статической массе оборудования и химической стойкости, у таких станков нет.

Оборудование для горячего прессования дверей обеспечивает, несмотря на большую мощность, статическую нагрузку на основание.

Классификация

Устройство фундаментов под технологическое оборудование зависит от массы станков или машин и от частоты вибраций, которые предстоит гасить основанию.

  • Массивные фундаменты наиболее распространены. Конструктивно они представляют собой сплошные блоки или плиты с выемками, шахтами и полостями. Понятно, что чем больше объем пустот, тем меньше цена фундамента; однако для сравнительно маломощного оборудования массивный фундамент чаще всего представляет собой простой монолит.Этот тип оснований повсеместно применяется для агрегатов с невысокой частотой вибраций.
  • Рамные конструкции, напротив, предназначены для того, чтобы эффективно гасить высокочастотные колебания. Рама, на которую опирается агрегат, соединяется с монолитным основанием стойками; именно они частично гасят вибрацию.

Массивные фундаменты, в свою очередь, могут классифицироваться еще по ряду критериев:

  • Бесподвальные сооружаются на нижнем этаже и минимально возвышаются над уровнем пола. Эта конструкция типична для всех тяжелых агрегатов.

Прокатный стан на бесподвальном фундаменте.

  • Подвальные, напротив, возвышаются над полом. Благодаря такой планировке они могут сооружаться не только на нижнем этаже, но и на перекрытии достаточной прочности. Функция фундамента в этом случае сводится лишь к распределению давления по большей площади.

Фундаменты подвального типа тоже могут делиться на две категории:

  • Сплошные — представляют собой, что не трудно понять из названия, монолитный блок без полостей.
  • Стенчатые — выше уровня пола, представляют собой набор продольных и поперечных перегородок. Они легче и дешевле; при этом механическая прочность конструкции зачастую почти не уступает сплошному основанию.

Массивные фундаменты по технологии сооружения делятся на фундаменты с подливкой и без нее.

  • Подливка подразумевает, что оборудование выставляется по уровню на подставках (иногда регулируемых). Затем пространство между основанием агрегата и поверхностью фундамента заливается жидким бетоном.

Подливка основания несущей конструкции.

  • В отсутствие подливки поверхность основания выравнивается и железнится сразу; установка оборудования на фундамент выполняется с его креплением болтами, предварительно установленными по шаблону.

Материалы

Для массивных фундаментов сейчас применяется только и исключительно железобетон. Вместе с тем около века назад для промышленного оборудования широко использовались кирпичные или каменные фундаменты. Марка применяемого бетона — не ниже М200; в отдельных случаях при особо сильных вибрационных нагрузках рекомендуется использовать бетон не хуже М300.

Однако: для легких машин, при работе которых не генерируются значительные вибрации (к примеру, для токарно-винторезных или сверлильных станков) допустимо применение бетонного основания без армирования.

Рамные основания могут быть:

  • Монолитно-железобетонными.
  • Сборными, из отдельных железобетонных блоков ( в том числе облегченных за счет полостей и отверстий).
  • Металлическими. Рама и стойки полностью выполняются из стали; железобетон остается лишь в основании, на которое опираются стойки.
  • Комбинированными. Типичное решение — стальная рама на железобетонных ригелях.

Расчеты

Полный расчет фундамента под оборудование выполняется профессионалами на основании большого количества данных:

  • Несущей способности грунта под основанием машины или станка;

Несущая способность грунта на открытой местности определяется по результату геологических исследований.

  • Насыщения грунта влагой;
  • Планируемого долговременного износа;
  • Максимума расчетных динамических нагрузок;
  • Чувствительности к вибрациям расположенных в непосредственной близости объектов;
  • Близости жилых домов;
  • Времени, проводимого вблизи оборудования персоналом. Согласно санитарным нормам проектирования промышленных предприятий СН 245-71, при частоте колебаний свыше 5,6 Гц среднеквадратическое значение скорости колебаний не должно превышать 2 миллиметров в секунду. Очевидно, что чем больше частота вибрации, тем меньшая их амплитуда допустима.

Однако: если время, которое персонал проводит вблизи источника вибраций, не превышает 15% от общего рабочего времени, нормы могут быть превышены втрое.

При этом отечественные источники прямо указывают, что точный расчет с учетом всех воздействующих на поведение фундамента факторов невозможен: мы слишком мало знаем о поведении грунтов в условиях динамичных нагрузок.

Упрощенная инструкция по оценке необходимых параметров включает несколько пунктов:

  • Оценку статического давления на грунт. Впрочем, этот пункт редко становится камнем преткновения: в отличие от фундаментов зданий, основания промышленного оборудования давят на почву с усилием не более 0,6 кгс/см2 для бесподвальных конструкций и не более 1,5 кгс/см2 для подвальных.
  • Обеспечение равномерности осадки. Центр тяжести должен быть максимально близко к геометрическому центру конструкции; при этом, чем проще схема основания в плане — тем проще обеспечить равномерное давление на грунт.

Перекос фундамента этого станка стал бы катастрофой для предприятия.

Оценка динамического давления на грунт требует знания несложных формул и констант. На практике может применяться следующая формула:

Pср=m*m1*R.

В этой формуле:

  • Pср — среднее статическое давление на основание. Оно получается делением статической массы агрегата на площадь основания фундамента.

Нюанс: в случае, если массивная плита покоится на гравийной или щебеночной подушке, эффективная площадь опоры будет больше площади бетонной конструкции.

  • m — коэффициент условий работы. Он берется равным 0,8 — 1,0 для машин периодического действия (фрезерные и токарные станки, лесопилки) и 0,5 для агрегатов ударного действия (кузнечные молоты, гильотинные ножницы).
  • m1 — коэффициент, позволяющий оценить поведение грунта при длительных деформирующих динамических нагрузках. Для слабых водонасыщенных грунтов (песков, пластичных глин) он берется равным 0,7; для прочих грунтов — 1,0.
  • R — условное расчетное давление на основание. Этот параметр тоже зависит от типа грунта и берется в таблицах СНиП.

Для удобства читателя приведем несколько справочных значений несущей способности разных грунтов.

  • Насыпной грунт без уплотнения — 1,0 кгс/см2.
  • Насыпной грунт с уплотнением — 1,5 кгс/см2.
  • Твердая глина — 6,0 кгс/см2.
  • Суглинок, супесь — 3,5 кгс/см2.
  • Крупный песок — 6,0 кгс/см2.
  • Средний песок — 5,0 кгс/см2.
  • Мелкий песок — 4,0 кгс/см2.
  • Пыль — 2,0 кгс/см2.
  • Гравий с глиной — 4,0 кгс/см2.
  • Галька с глиной — 4,5 кгс/см2.
Читайте также  Щебеночная подготовка под фундамент снип

Давайте в качестве примера посчитаем необходимую площадь кузнечного пневматического молота М4127 (масса 2100 кг) на влажном песчаном грунте со средним размером зерна.

Кузнечный молот М4127.

  1. Расчетная несущая способность интересного нам типа грунта оценивается как 5,0 кгс/см2.
  2. Для кузнечного молота, представляющего собой типичный механизм ударного действия, среднее давление на основание должно рассчитываться по формуле Pст=0,5(коэффициент для ударных механизмов)*0,7(коэффициент для слабых влажных грунтов)*5,0кгс/см2=1,75 кгс/см2.
  3. Минимальная площадь основания фундамента должна быть равна 2100/1,75=1200 см2, или прямоугольник размером 40*30 сантиметров.

Для справки: габариты молота М4127 (длина и ширина) — 1575х710 миллиметров.Очевидно, что любой фундамент, на котором физически поместится его основание, будет достаточным для описанного типа грунта.

Фундаменты для ударных механизмов

На практике для механизмов ударного действия основная проблема — это вовсе не осадка фундамента в грунт. Куда более опасно разрушение самого фундамента под действием ударных нагрузок.

Какие решения могут применяться?

  • Виброизолированные конструкции на пружинах и резиновых демпферах уже упоминались.
  • Под шабот — основание наковальни кузнечного молота — часто укладываются щит из дубового бруса. Минимальная толщина дубовой прокладки — 100 миллиметров; однако щиты могут укладываться и в несколько слоев. Впрочем, для молотов с массой ударной части до тонны применимы и более дешевые породы древесины — сосна или лиственница.

Дубовый щит (п.1 на схеме) выступает в роли демпфера ударной нагрузки.

Нюанс: на пылевых и водонасыщенных основаниях для молотов рекомендуется устройство свайно-плитного фундамента, передающего вибрации на нижние, более плотные слои грунта.

Технология

Предположим, что нам предстоит своими руками подготовить основание для компрессора небольшой мощности.

С чего начать?

  1. Размечаем расположение агрегата. Его основание не должно быть связано с фундаментами стен или опорных колонн; минимальное расстояние от выступающих частей оборудования до колонн или стен — 1 метр.
  2. Размечаем границы плиты основания. Важный момент: расстояние от ее краев до осей фундаментных болтов в общем случае должно быть в пределах 120 — 200 мм.
  3. Готовим котлован. Его глубина определяется глубиной промерзания; впрочем, в отапливаемом цеху проблема может и не быть актуальной.
  4. Засыпаем котлован слоем песка или щебня и уплотняем его. Толщина подсыпки — 100 — 150 мм.
  5. Собираем опалубку и укладываем в нее армирующую сетку. На опалубку укладывается шаблон, через отверстия в котором снизу заводятся и фиксируются гайками фундаментные болты.
  6. Опалубка заливается бетоном слоями в 100-150 мм с обязательной виброукладкой или штыкованием каждого слоя.
  7. Акт готовности фундамента к установке оборудования подписывается лишь после набора бетоном прочности в течение 28 дней, ревизии и прочностных испытаний.

Готовая платформа для компрессора.

Вывод

Если для тяжелого промышленного оборудования необходимы сложные расчеты и услуги специалистов, то фундаменты под оборудование малой мощности могут изготавливаться со сравнительно небольшими затратами времени и материалов. В представленном видео в этой статье вы найдете дополнительную информацию по данной теме. Успехов в строительстве!

Источник: https://ofundamentah.com/operacii/234-fundamenty-pod-oborudovanie

Фундаменты под оборудование: особые требования, виды, проектирование, формулы расчета и особенности применения

На сегодняшний день существует СП для фундаментов под оборудование. СП — это свод правил, номер которого 26.13330.2012. Эти правила устанавливаю все необходимые требования, которые касаются не только практической части заливки фундамента, но и расчетной части, и проектировки.

Требования к фундаменту

Фундамент под оборудование должен соответствовать определенным требованиям, чтобы он мог успешно эксплуатироваться. Соблюдать их очень важно, так как обычно основание будет подвергаться воздействию агрессивных сред, динамическим нагрузкам, которые будет создавать промышленное оборудование, и т. д.

Необходимо, чтобы фундамент соответствовал следующим требованиям:

  • высокий порог прочности, чтобы выдерживать и статические, и динамические нагрузки, которые будет создавать устройство;
  • необходимо наличие такого свойства, как инертность или, другими словами, стойкость к химическим веществам;
  • фундамент под оборудование должен иметь огромную массу, чтобы он мог гасить вибрацию, которую будет создавать включенный механизм;
  • отклонения от плановых размеров должны быть минимальными, то есть фактические размеры должны практически полностью соответствовать расчетным показателям;
  • площадь опоры должна быть больше, чем у аппарата, устанавливаемого на основание.

Стоит отметить, что прочность и химическая стойкость — это те свойства, от которых напрямую зависит срок службы фундамента. Теми веществами, которые негативно влияют на фундамент, являются:

  • смазочные вещества;
  • жидкости для охлаждения устройств;
  • масла технического предназначения;
  • топливо разного рода.

Кроме двух основных свойств, очень важно, чтобы фундамент под оборудование мог успешно гасить вибрации, которые создает рабочий механизм.

Это является очень важной функцией, так как если вибрации будут постоянно воздействовать на основание и агрегат, то от этого снизится срок эксплуатации. В некоторых случаях это негативно будет сказываться даже на соседних устройствах.

Сами по себе вибрации возникают из-за того, что в промышленных машинах постоянно работают неравномерно расположенные вращающиеся детали.

Что касается совпадений с проектом и расчетами, то здесь важно отметить, что кроме стандартных высоты, длины и ширины, должны совпадать даже места расположения креплений оборудования. Допускаются лишь самые минимальные расхождения между проектом и фактической конструкцией.

Здесь можно добавить, что устройство фундамента под оборудование, которое весит до 2 т и считается малогабаритным, не всегда необходимо. Если такой аппарат помимо небольшого веса еще и не вызывает сильных динамических нагрузок во время работы, то его можно монтировать непосредственно на железобетонный пол. В некоторых случаях можно установить его на межэтажное перекрытие.

Регламентации по обустройству

Выше были рассмотрены основные требования, которым должен удовлетворять любой фундамент, предназначенный для установки на нем промышленного оборудования. Однако существуют и другие требования — для фундамента под оборудование с динамическими нагрузками, которым он должен соответствовать.

  1. Проектировочные работы, как и практическая часть по обустройству основания, должны проводиться лишь компетентными специалистами, которые, кроме этого, имеют еще и опыт проведения данного вида работ.
  2. Для того чтобы создать правильный и полноценный проект, необходимо, чтобы в наличии были все требуемые данные.
  3. Во время устройства фундамента под оборудование необходимо периодически проводить контроль качества.
  4. Очень важно, чтобы действия всех участников рабочего процесса были строго скоординированы.
  5. Те фундаменты, что уже были возведены, должны эксплуатироваться лишь с тем оборудованием, для которого они предназначаются. Для этого имеется техническая документация.
  6. Для строительства можно использовать лишь те материалы, которые подходят по проектной документации.
  7. В будущем нужно проводить обслуживание фундамента, чтобы конструкция эксплуатировалась максимально долго.
  8. В качестве крепления рекомендуется использовать максимально простые детали. К примеру, это могут быть анкерные болты, которые вмуровываются в бетон.

Разные виды агрегатов

При устройстве фундамента под оборудование, необходимо понимать, что в настоящее время существует огромное количество разных машин, которые объединены в группы. Для каждой группы необходимо создавать основание по своим правилам и с разными требованиями.

В настоящее время существуют следующие виды групп, для которых нужно возводить отдельные фундамент.

  1. Агрегаты, у которых имеется криво-шатунный механизм. Сюда можно отнести поршневые компрессоры, лесопильные рамы и прочее.
  2. Отдельной группой выступают турбоагрегаты, к примеру, турбокомпрессоры.
  3. Некоторое электрическое оборудование, такое как моторы-генераторы также нуждаются в основании.
  4. Обустраивается фундамент под промышленное оборудование прокатного типа.
  5. Отдельной группой выступают станки для резки металла и прессы разного предназначения.

Виды оснований

Далее будут представлены разные виды оснований, которые используются для монтажа различного оборудования:

  1. Наиболее простой вариант — это фундамент-плита без подвала. Здесь существует ограничение, которое заключается в том, что установить такое основание можно лишь на первом этаже. Кроме того, плита получается достаточно дорогая, так как приходится тратить значительное количество средств на строительные материалы. Однако есть и хорошее преимущество, которые заключается в том, что фундамент отлично гасит вибрации.
  2. Второй вариант — это рамная основа, которая снабжена ростверком из балок. Данное основание характеризуется тем, что способно хорошо переносить колебания с высокой частотой. По этой причине очень часто применяется для монтажа механизмов, у которых наблюдается ударный принцип действия.
  3. Третий вариант — это ступенчатая опора. Такое основание возводится только со второго этажа. В данном случае нагрузка от оборудования будет передаваться внешними стенами, а также перегородками.
  4. Последняя разновидность фундамента под динамическое оборудование — это фундамент-перекрытие, имеющее подвал. Обустраивать такое основание можно лишь выше первого этажа. Все вибрации, которое будет создавать оборудование, в данном случае будет передаваться перекрытиям, то есть перекрытиям каркаса. Сам по себе фундамент способен выдерживать лишь незначительные колебания.

На сегодняшний день довольно популярными становятся такие основания, которые имеют пружины или же виброопоры другого типа. Они часто используются для установки механизмов, относящихся к легкому и среднему типу по своему весу.

Существует такое приспособление, как демпфер, которое предназначено для гашения вибраций. Лучше всего оно подходит для установки под основы рамного типа.

Стоит отметить, что фундамент под технологическое оборудование делится на два вида.

Читайте также  Какой фундамент лучше на глинистой почве

Первый тип — это бесподвальный фундамент. У него практически полностью отсутствует часть, которая располагается над полом. Второй же тип — подвальный, у которого данная часть развита достаточно сильно.

Фундаменты группового и индивидуального типа

На сегодняшний день фундаменты под монтаж оборудования могут быть индивидуальные и групповые.

Что касается группового вида, то данный фундамент предназначается для размещения нескольких промышленных агрегатов легкого или среднего веса — до 8 тонн.

При этом у них должна быть жесткая станина, нормальная точность работы, а эксплуатироваться они должны в основном в статическом режиме. Толщина обычно составляет от 150 до 250 мм.

Жестко станиной считается та, у которой соотношение длины к высоте — не более чем 2 к 1.

Что же касается строительства фундамента под оборудование индивидуального типа, то в данном случае на основание устанавливается механизм, масса которого позволяет его отнести к среднему или тяжелому классу.

Кроме этого, обычно такие механизмы характеризуются динамическими нагрузками среднего или значительного класса. Такое основание не только успешно гасит вибрации, но и изолирует агрегаты друг от друга.

Это важно, так как в таком случае отсутствует колебания между ними.

Можно добавить, что машины, которые имеют средний или легкий вес, а также характеризуются статическим периодом работы, нередко монтируются прямо на железобетонный пол или же перекрытие. Если необходимо такое основание, можно дополнительно усилить бетонной стяжкой, чтобы не заливать отдельный фундамент.

Какие материалы используются для строительства

Так как фундамент должен быть очень прочным, устойчивым к вибрациям, а также к воздействию химических веществ, то и расходные материалы должны быть высокого качества, чтобы получить хорошее основание. Для обеспечения результата используют следующие расходные материалы:

  • готовые железобетонные блоки, во время строительства их перевязывают друг с другом;
  • сам железобетон, который можно получить, если заливать арматурный каркас в опалубке;
  • понадобится качественный металл, если необходимо создавать свайные конструкции с ростверками в виде рамы.

Очень важно использовать качественный цемент для подвального и бесподвального фундамента. Если будут устанавливаться легкие агрегаты, то можно использовать марку М200 или М300. Если планируется монтаж тяжелого промышленного агрегата, то необходимо использовать марку М400. Цемент должен принадлежать к классу В15.

Стоит отметить, что при обустройстве фундамента в частном цеху или в домашней мастерской можно использовать в качестве исходного сырья бутовый камень. Редко, но все же иногда встречается фундамент кирпичного типа. То есть кирпичи укладываются на цементную основу.

Здесь очень важно, чтобы грунтовые воды располагались достаточно глубоко. Чаще всего такая основа применяется только для тех машин, чья масса не превышает 4 тонн. Толщина фундамента обычно составляет минимум 50 см.

Важно добавить, что в таком случае применение силикатного кирпича исключается.

Раньше довольно часто устанавливали легкие машины на деревянный пол, однако сейчас это практически исключено. Основной недостаток связан с тем, что дерево слишком сильно коробится, и очень быстро, из-за чего меняется форма основания. Деревянный пол можно использовать, но лишь в качестве временной основы.

Что касается крепления оборудования к основанию, то в данном случае всегда используется болтовое соединение, которое прописано в СП.

Стоит лишь отметить, что если агрегат характеризуется высокими ударными нагрузками или сильными вибрациями во время работы, то используются болты не менее 42 мм, и съемного типа.

Также очень важно, чтобы расстояние от нижнего конца болта до подошвы фундамента составляло не менее 10 см. На сегодняшний день популярным стало химическое анкерное крепление.

Проектирование

Проектирование фундаментов под оборудование — это первоначальный этап всей работы. В данном случае исходными данными для проведения проектировочных работ являются следующие факторы:

  • характеристики грунта, к примеру, глубина промерзания, расположение подземных вод, структура и т. д.;
  • статическая нагрузка;
  • сила вибраций или динамическая нагрузка;
  • опорная площадь станины самого оборудования;
  • важную роль играет температурный режим, при котором будет эксплуатироваться основа.

Еще одно важное требование, которое должен учитывать проектировщик — это воздействие агрессивных сред, а также защитные меры. Прежде чем начать строительство, необходимо провести гидрогеологическое инженерное исследование почвы, чтобы узнать ее характеристики. Если грунт считается рыхлым, то фундамент должен быть более массивным.

Расчетные работы

Расчет фундамента под оборудование — это следующий этап его строительства. Основой расчетов в данном случае станут два фактора.

Первый из них — это несущая способность грунта, а второй — это статическая и динамическая нагрузка, которую будет оказывать монтируемое устройство.

В данном случае необходимо рассчитать все так, чтобы сумма нагрузок статического и динамического типа, которые будут передаваться через подошву фундамента грунту, была равна несущей способности почвы.

При расчетах фундамента для оборудования важно вычислить статическую нагрузку. Она зависит от массы оборудования. Что касается расчетов динамической нагрузки, то она вычисляется по давлению, которое воздействует на ростверк фундамента. Стоит отметить, что давление, которое возникает из-за массы станка, необходимо корректировать, используя следующие коэффициенты:

  • постоянная условий работы, которая начинается от 0,5 для кузнечного молота и составляет до 1,0 для станка токарно-винторезного типа;
  • постоянная осадка грунта от 0,7 до 1,0, которая варьируется в зависимости от влажности почвы.

Зная все три необходимые составляющие, не составляет труда провести все требуемые расчеты, чтобы получить точные характеристики, необходимые для основания конкретного станка.

Армирование фундамента под оборудование

Для того чтобы качественно и правильно провести армирование фундамента, необходимо знать несколько основных пунктов:

  1. Чтобы добиться максимальной прочности от армирования, необходимо закреплять прутья в «клеточку».
  2. В данном случае рекомендуется не использовать сварку для соединения прутьев, а скреплять их при помощи проволоки. Таким образом можно снизить количество швов и более хрупких соединений.
  3. Можно сделать конструкцию еще более прочной, если в углах конструкции загибать арматуру. Кроме того, само соединение лучше всего производить внахлест.

Стоит также отметить, что армирование фундамента разного типа производится разными методами. Наиболее трудоемкий — процесс армирования ленточного фундамента.

Он требует больше всего затрат и строительных материалов. Можно проводить армирование плитного фундамента. Однако данный процесс достаточно сложный, а также требует высокой квалификации специалиста.

Кроме того, рекомендуется иметь опыт такой работы.

Источник: http://fb.ru/article/397866/fundamentyi-pod-oborudovanie-osobyie-trebovaniya-vidyi-proektirovanie-formulyi-rascheta-i-osobennosti-primeneniya

Как правильно рассчитать фундамент под частный дом? Расчёт опорной площади, размеров основания, арматуры и бетона

Расчет фундамента — это важнейший вопрос, с которого должно начинаться строительство. От правильности сооружения основания постройки в будущем будет зависеть ее долговечность, да и вообще безопасность проживания.

Полный расчет фундамента является достаточно сложной задачей, доступной только для специалистов, но упрощенный расчет дает возможность обеспечить необходимый уровень надежности.

В действующих нормативных документах изложены основные правила таких расчетов, что и следует учитывать при планировании частного строительства (смотрите: типы частных домов).

Принципы расчетов

Расчет фундамента строения включает определение таких важнейших параметров, как заглубление, площадь опоры на грунт, размеры основания. Он должен учитывать все определяющие факторы – геофизические характеристики грунта, климатические особенности, величины и направленность нагрузок, в том числе от веса всех элементов строения и самого фундамента.

Необходимые исходные данные следует брать у организаций, специализирующихся на геологических изысканиях, а также из проверенных источников.

Прежде чем приступить к строительству, необходимо определить потребность в бетоне, армирующих элементах и других материалах. Возведение фундамента нельзя останавливать на середине, а потому расчеты должны помочь правильно закупить нужное их количество.

Следует учитывать, что расчеты несколько различаются для разных типов фундаментов. Свои методики существуют для ленточных, столбчатых, плитных и свайных вариантов оснований. При отсутствии достоверных данных о состоянии грунта в месте закладки дома, придется проводить геологические исследования с привлечением специалистов.

Учет состояния грунта

Несущая способность грунта считается важнейшей характеристикой, определяющей тип и размеры фундамента. Она, прежде всего, зависит от его плотности и структуры.

Оценить ее можно по сопротивлению нагрузкам – Rо, указывающей какая нагрузка на единицу площади допустима без его проседания (на поверхностном уровне). Выражается Rо в кг/см² и считается табличной, т.е.

справочной, величиной.

Величина сопротивления зависит от пористости (плотности) почвы и ее увлажненности. В таблице ниже приведены значения этого показателя для наиболее типичных почв.

Значения сопротивления нагрузке для некоторых типов грунта:

Характер грунта Коэффициентпористости Ro ,кг/см²
Сухие Влажные
Супеси 0,50,7 3,12,6 3,12,0
Суглинки 0,50,7

1,0

3,02,6

2,0

2,41,8

1,1

Глины 0,50,60,8

1,0

6,05,03,1

2,6

4,23,02,0

1,2

Достаточно высоким сопротивлением обладают гравийные и щебневые грунты – 4-5 и 4,4-6 кг/см², соответственно, в зависимости от глинистого или песчаного наполнения. Крупнозернистый песчаник имеет Rо 3,6-4,4 кг/см², песчаник средней зернистости – 2,6-3,4 кг/см², мелкозернистый песчаник – 2-3 кг/см² в зависимости от увлажненности.

С увеличением глубины залегания пласта меняется плотность грунта, а значит, и сопротивление нагрузкам. Его значение на разных глубинах (h) можно определить по формуле R=0,005R0(100+h/3).

При определении заглубления фундамента важную роль играют такие параметры состояния грунта:

  1. Уровень расположения грунтовых вод. Фундамент не должен доходить до водного пласта. Этот параметр часто становится определяющим для выбора типа основания. В частности, при высоком расположении вод приходится возводить плитный фундамент.
  2. Глубина зимнего промерзания грунта. Подошва фундамента должна располагаться на 30-50 см ниже уровня промерзания. Дело в том, что при замерзании грунт сильно вспучивается, что создает выталкивающую нагрузку на основание.
  3. Уровень залегания высокопучинистых пластов. Фундаментную подошву нельзя упирать в такой грунт, а значит, его следует пройти насквозь.
Читайте также  Как правильно рассчитать нагрузку на фундамент

Заглубление фундамента частного дома обычно не рассчитывается, т.к. требует использования сложной методики. Его выбор осуществляется, исходя из указанных практических рекомендаций.

Расчет опорной площади

При выборе фундамента важно правильно определить минимально допустимую площадь его опоры на грунт. Ее можно вычислить по формуле S= γn · F / (γc · Rо), где:

  • γc – коэффициент эксплуатационных условий;
  • γn – коэффициент запаса надежности, принимаемый равным 1,2;
  • F – полная (суммарная) нагрузка на грунт.

Коэффициент эксплуатационных условий (условий работы) зависит от характера грунта и сооружения. Так, на глинистых почвах для кирпичных конструкций он принимается равным 1,0, а для деревянных – 1,1.

В случае песчаного грунта: γc равен 1,2 при больших и длинных строениях, жестких небольших домах; 1,3 – для любых маленьких построек; 1,4 – для больших не жестких домов.

Вес сооружения

Основу расчета составляет нагрузка, возникающая от веса всех элементов сооружения, включая сам фундамент. Конечно, подсчитать точно массу всех конструктивных деталей достаточно сложно, а потому принимаются средние значения удельного веса, отнесенного к единице площади поверхности.

Стеновые конструкции:

  • каркасные дома с утеплителем при толщине стены 15 см – 32-55 кг/м²;
  • бревенчатый и брусчатый сруб – 72-95 кг/м²;
  • кирпичная кладка толщиной 15 см – 210-260 кг/м²;
  • стены из железобетонных панелей толщиной 15 см – 305-360 кг/м².

Перекрытия:

  • чердак, деревянное перекрытие, пористый утеплитель – 75-100 кг/м²;
  • то же, но с плотным утеплителем – 140-190 кг/кв.м;
  • напольное перекрытие (цокольное), деревянные балки – 110-280 кг/м²;
  • перекрытие бетонными плитами – 500 кг/м².

Крыша:

  • металлическая кровля из листа – 22-30 кг/кв.м;
  • рубероид, толь – 30-52 кг/кв.м;
  • шифер – 40-54 кг/кв.м;
  • керамическая черепица – 60-75 кг/кв.м.

Расчет веса сооружения с учетом приведенных удельных весов сводится к определению площади соответствующего элемента и перемножении ее на данный показатель. В частности, для получения площади стен надо знать периметр дома и высоту стен. При расчете кровли необходимо учитывать угол ската.

Вес фундамента и снеговая нагрузка

Площадь опоры сооружения определяется на уровне подошвы, а значит, в суммарной нагрузке на грунт необходимо учитывать еще и вес фундамента. Методика расчета зависит от его типа:

  1. Ленточный фундамент. Прежде всего, определяется заглубление (Нф), которое должно быть ниже уровня промерзания. Например, при уровне 1,3 м нормальное заглубление составляет 1,7 м. Затем, определяется периметр ленты (Р), как 2(а+в), где а и в – длина и ширина дома, соответственно. Ширина ленты (bл) выбирается с учетом толщины стены. В среднем она составляет 0,5 м. Соответственно, объем ленточного фундамента V=P x bл х Нф. Умножив его на плотность армированного бетона (в среднем 2400 кг/м³), получим расчетный вес ленточного фундамента.
  2. Столбчатый фундамент. Расчет ведется на каждую опору. Вес одного столба определится, как произведение плотности бетона на объем заливки (V=SxНф, где S – площадь столба). Кроме того, обязательно учитывается вес ростверка, который рассчитывается аналогично ленточному фундаменту.
  3. Для определения веса монолитной бетонной плиты вычисляется ее объем (V=SxНф, где S – площадь плиты). Заглубление обычно составляет порядка 40-50 см.

В зимнее время нагрузка на грунт может значительно увеличиться за счет скопления снега на кровле. Принято считать, что при скате кровли с углом более 60 градусов, снег не накапливается, и снеговую нагрузку можно не учитывать.

При меньшем угле наклона крыши учитывать ее необходимо. Многолетние наблюдения дают такие параметры этой нагрузки:

  • северные районы – 180-195 кг/м²;
  • средняя полоса РФ – 95-105 кг/м²;
  • южные регионы – до 55 кг/м².

После определения всех указанных весовых параметров можно приступить к расчету минимальной площади подошвы по вышеприведенной формуле. Полная нагрузка на грунт (F) определится, как сумма веса стен, перекрытий, кровли, фундамента и снеговой нагрузки.

При расчете столбного и свайного фундамента суммарная нагрузка делится на количество опор, т.к. ростверк равномерно распределяет ее на опоры.

Расчет потребности в бетоне

Работы по заливке бетона нельзя останавливать, не закончив их полностью. Для этого важно правильно оценить потребность в нем. Расчет необходимого количества проводится с учетом типа фундамента:

  1. Ленточный вариант. Порядок расчета можно рассмотреть на примере. Фундамент делается для дома размером 6х8 м. Глубина промерзания грунта составляет 1 м, а потому заглубление выбираем 1,4 м. Ширина ленты (уточненная по расчету минимальной площади опоры) – 0,5 м. Объем фундамента составит V=PxbлхНф, т.е. (2х6х8)х1,4х0,5=67,2 м³. Рекомендуется взять запас порядка 8-10 процентов. Окончательно, для данного фундамента потребуется 74 м³ бетона.
  2. Столбчатый тип. Если опора имеет прямоугольное сечение, то площадь ее определится, как произведение двух сторон. При возведении столба круглой формы применяется известная формула расчета окружности S=3.14R2, где R – радиус столба.
  3. Плитный фундамент. Объем определяется по формуле для правильного параллелепипеда, т.е. V=axbxHф, где а и b – размеры сторон плиты (м). Например, для дома 6х8 м при заглублении 0,4 м объем составит 19,2 м³.

Несколько сложнее учесть дополнительную потребность в бетоне при формировании ребер жесткости на плитном основании. Они изготавливаются обычно с шагом 2 м, причем по краям они располагаются обязательно.

Для выбранного примера количество ребер по длине составляет 4, а по ширине 3. Общая длина этих элементов составит (8х4)+(6х3) =50 м. Наиболее характерная ширина и высота ребра – 0,1 м. Следовательно, общий дополнительный объем бетона составит 50х0,1х0,1=0,5 м³.

Расчет потребности арматуры

Перед началом работ важно правильно оценить и потребность материалов для обеспечения армирования фундамента. Расчет проводится следующим образом.

Ленточный фундамент

Для него обычно используется 2 горизонтальных ряда стальной арматуры периодического профиля диаметром 10-14 мм.

Для вертикальной и поперечной увязки можно применять гладкие стержни диаметром 8-10 мм.

Связка стержней между собой обеспечивается стальной вязальной проволокой.

Пример расчета для дома 6х8 м. Общая длина фундамента – 28 м. Для продольного армирования используется арматура диаметром 12 мм, и она укладывается по 2 штуки в каждом ряду (в сечении – 4 штуки). Стандартная длина стержней – 6 м.

Для вертикальной увязки нужны стержни диаметром 8 мм. При высоте фундамента 1,4 м длина каждого стержня составит 1,2 м. Устанавливаются они с шагом 0,6 м, т.е. количество стержней на всю длину 2х28/0,6=94 штуки.

Общая длина составит 94х1,2=113 м. В поперечном направлении связка обеспечивается в тех же точках. При ширине ленты 0,4 м длина каждого стержня составляет 0,3 м. Потребность определится, как 94х0,3=29 м. Общая потребность в арматуре диаметром 8 мм составит 142 м.

Потребность в вязальной проволоке определяется по количеству узлов. В одном сечении их 4 штуки, а общее количество 4х28/0,6 =188. Для одной связки потребуется порядка 0,3 м проволоки. Суммарная потребность – 0,3х188=57 м.

Столбчатый

Арматура устанавливается в вертикальном положении (стержни диаметром 10-12 мм), увязанные в поперечном сечении стержнями диаметром 6-8 мм. на один столб требуется 4 основных стержня, а увязка производится в 3-х местах.

В рассматриваемом примере (заглубление 1,4 м) для одного столба нужно 4х1,4=5,6 м арматуры периодического профиля диаметром 10 мм. Для поперечной увязки используются стержни длиной 0,3 м.

Их общая потребность 3х4х0,4= 4,8 м. Вязальной проволоки нужно 3х4х0,3 м=3,6 м.

Плитный

Обычно армирование производится из стальных стержней диаметром 6-8 мм, уложенных в виде сетки в один ряд. Шаг укладки составляет 0,3 м. Для дома 6х8 м потребуется по ширине 6/0,3=20 стержней, а по длине – 8/0,3=27 штук.

Общая длина составит (27х6)+(20х8) =382 м. Количество пересечений стержней – 27х20=540, т.е. вязальной проволоки нужно 540х0,3=162 м.

Калькулятор онлайн размеров, а также потребности арматуры и бетона

Правильная заготовка материалов позволяет избежать проблем при строительстве. При покупке их стоит учитывать наличие строительных навыков. Отсутствие опыта может приводить к незапланированным отходам.

Строительство фундамента любого типа требует проведения расчетов. Без учета реальных нагрузок и состояния грунта невозможно обеспечить надежную его конструкцию.

Несоответствие его размеров нагрузкам может привести к проседанию сооружения, а то и к его разрушению. Точный расчет могут провести только специалисты, но необходимый оценочный расчет способен осуществить любой человек.

Источник: https://domavlad.ru/fundament/raschet-onlain-kalkulyator.html

betfundament.com

Рекомендации Рекомендации по проектированию фундаментов под технологическое оборудование, возводимых в условиях реконструкции - скачать бесплатно

Москва Стройиздат 1989

Рекомендованы к изданию решением научно-технического совета Харьковского Промстройниипроекта Госстроя СССР.

Приведены требования к проектированию фундаментов. Даны общие указания по расчету оснований и фундаментов, а также технико-экономическая оценка вариантов реконструкции фундаментов.

Для инженерно-технических работников проектных и научно-исследовательских организаций.

Разработаны Харьковским Промстройниипроектом Госстроя СССР (кандидаты технических наук А.М. Гельфандбейн, Л.А. Гелис, Ю.Д. Кузнецов, Г.С. Лекумович, И.Я. Лучковский, Э.Ю. Малый, О.А. Петров, Н.П. Рунцо, В.Б. Тойбис, С.Л. Фомин, И.Г. Черкасский, В.Л. Чернявский, Л.А. Шелест; инженеры А.И. Гапич. С.Д. Дождева, Л.Ф. Зацаринная, Я.В. Иосилевич, Г.В. Казакова, А.В. Колесник, Е.Г. Лобасенко, В.Н. Медведский, Л.Г. Молчанов, А.В. Палей, А.Д. Саратов, И.А. Плахотникова) при участии НИИЖБа Госстроя СССР (кандидаты техн. наук М.И. Брайловский, Л.Р. Спивак), Гипромеза (инж. Е.Н. Булгаков), Ленинградского Промстройпроекта (кандидаты техн. наук. В.М. Пятецкий, А. Л. Мац), Приднепровского Промстройпроекта (инженеры Л. X. Каботянская, Е.Г. Лещавер), Гипростали (инженеры С.И. Пеняков, М.С. Бакал), Гипротракторосельхозмаша (инж. А.Я. Спивак), Сибирского Промстройпроекта (инж. О.А. Ким), Укргипромеза (инж. В.Г. Бассель), Ленинградского Гипромеза (инженеры А.А- Капленков, Ю.М. Лаевский), Донецкого Промстройниипроекта (канд. техн. наук С.Л. Хомутченко, инж. А.П. Подымов), Промстройпроекта (инж. В.А. Бунин), Укргипромаша (инж. В.А. Чумак).

ОГЛАВЛЕНИЕ

1. Общие положения

2. Требования к проектированию фундаментов

3. Указания по расчету оснований и фундаментов

4. Конструктивные решения

5. Технико-экономическая оценка вариантов реконструкций фундаментов

Приложение 1. Расчет осадок, кренов и переменных коэффициентов жесткости оснований реконструируемых фундаментов.

Приложение 2. Узлы сопряжения элементов сборно-монолитных облегченных фундаментов.

Приложение 3. Пример расчета реконструкции фундамента под оборудование.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящие Рекомендации распространяются на проектирование фундаментов под технологическое оборудование и заглубленных помещений в условиях реконструкции при нормальном температурном режиме, а также при воздействии повышенных и высоких температур.

1.2. Проект реконструкции фундаментов и заглубленных помещений должен разрабатываться на основании следующих материалов:

- строительного задания на проектирование;

- материалов инженерно-геологических изысканий;

- технических условий на проектирование.

1.3. Задание на проектирование фундаментов под оборудование в дополнение к общим данным по оборудованию, предусмотренным инструкцией о составе, порядке разработки, согласования и утверждения проектно-сметной документации на строительство предприятий, зданий и сооружений и требований СНиП II-19-79 должно содержать:

- нагрузки на существующий фундамент;

- срок эксплуатации существующего фундамента;

- чертежи существующих фундаментов и примыкающего подземного хозяйства;

- сведения о ремонтах фундаментов с чертежами усиления и изменения первоначальной конструкции;

- сведения о возможном расширении и прогноз развития располагаемого в цехе производства;

- температурный режим эксплуатации существующего фундамента.

1.4. Вместе с заданием на проектирование реконструируемого сооружения, заказчик передает проектной организации заключение о результатах обследования состояния фундаментов и подземных помещений и условия производства работ, а также материалы по прогнозированию температур нагрева фундамента   с учетом зон разрушения бетона, вызванного высокотемпературным воздействием.

Заключение должно содержать следующие характеристики существующего сооружения: классы и марки бетона, замасленность бетона, класс арматуры, степень коррозии арматуры, бетона и анкерных болтов, а в необходимых случаях собственные частоты колебаний фундамента и отдельных его частей.

Условия должны содержать следующие материалы:

- данные о продолжительности временной остановки производства на период выполнения строительных и монтажных работ;

- сведения о последовательности разборки и переносе действующих инженерных сетей, местах и условиях подключения временных инженерных сетей и коммуникаций;

- перечень подъемно-транспортных средств, предоставляемых подрядной строительной и монтажной организациям;

- перечень зданий, сооружений и помещений, которые могут быть использованы в период строительства;

- данные о режиме выполнения строительных и монтажных работ на действующих производствах (количество смен, сроки и продолжительность остановки работ производства);

- сведения об условиях организации доставки строительных грузов и перемещения строительных механизмов, об условиях организации комплектной доставки сложного технологического оборудования разовых (единичных) заказов;

- места складирования строительных материалов и конструкций;

- условия размещения временных инвентарных зданий на период строительства.

1.5. Материалы инженерно-геологических изысканий в дополнение к требованиям СНиП 1.02.07-87 должны содержать данные о физических, деформационных и прочностных характеристиках грунтового основания реконструируемого фундамента. При воздействии технологических температур на грунт основания необходимо дополнительно провести испытания прочностных и деформационных характеристик грунтов в диапазоне температур 20-100°С и влажности 0-30%.

1.6. Фундаменты под оборудование для условий реконструкции следует проектировать бетонными и железобетонными монолитными и сборно-монолитными, а при соответствующем обосновании - сборными. Выбор типа фундамента, класса бетона и арматуры производится в соответствии с требованиями СНиП II-19-79.

1.7. Классы вновь укладываемого бетона по прочности на сжатие и растяжение, а также марки по морозостойкости и жаростойкости должны быть не ниже классов и марок бетона существующей конструкции.

1.8. Фундаменты, предназначенные для работы в условиях воздействия повышенных температур (от 50 до 200°С), следует проектировать из обычного бетона по ГОСТ 25192-82.

Фундаменты, которые при эксплуатации подвергаются постоянному воздействию температур до 300°С (температурный режим, при котором в процессе эксплуатации колебания температуры не превышают 30% расчетной величины), допускается проектировать из обычного бетона.

Фундаменты, предназначенные для работ в условиях воздействия высоких температур (выше 200°С), должны предусматриваться из жаростойкого бетона по ГОСТ 20910-82*. Дополнительно необходимо учитывать требования к исходным материалам для приготовления жаростойких бетонов, подбору состава бетона, технологии приготовления и особенности производства работ по СНиП 3.09.01-85. Классы и марки бетона назначаются в соответствии со СНиП 2.03.04-84.

1.9. Арматура и прокатная сталь для фундаментов, работающих при воздействии повышенной и высокой температур, назначаются по СНиП 2.03.01-84 с учетом предельно допустимой температуры по СНиП 2.03.04-84.

1.10. При реконструкции фундаментов, пропитываемых в процессе эксплуатации маслами, эмульсиями и т.п., для обеспечения сцепления старого бетона с новым производят подготовку замасленного бетона, которая включает традиционную механическую обработку поверхности контакта металлическими щетками, зубилом и бучардой, а также комплексный химико-термический способ обезмасливания. Данный способ включает в себя: очистку поверхности бетона от масла с применением водных растворов поверхностно-активных веществ (ПАВ) (например, ОП-7, ОП-10); кратковременный нагрев поверхности инфракрасными излучателями со скоростью 20-30°С/мин до температуры 300°С; очистку поверхности с применением органического растворителя (например, трихлорэтан, перхлорэтилен); сушку и увлажнение чистой подои. Перед укладкой нового бетона поверхность старого смазывают кистью цементно-водной суспензией консистенции жидкой сметаны.

Вид химических веществ, режим и последовательность обработки комплексным способом выбирают в зависимости от требуемой по расчету величины прочности сцепления старого и нового бетона.

1.11. Для ускорения твердения вновь укладываемых бетонов рекомендуется использование добавок - ускорителей твердения, вводимых в бетонную смесь с водой затворения. При этом необходимо соблюдение условий «Руководства по применению химических добавок в бетоне» (М.: Стройиздат, 1981). В этих случаях, когда объем бетонирования не превышает 1 м3 в одном месте, в качестве интенсифицирующего твердение бетона воздействия целесообразно применять «мягкие режимы» электропрогрева при температуре изотермического выдерживания не более 60 °С. Параметры электропрогрева выбирают согласно указаниям «Руководства по производству бетонных работ в зимних условиях, районах Дальнего Востока, Сибири и Крайнего Севера» (М.: Стройиздат. 1982).

2. ТРЕБОВАНИЯ К ПРОЕКТИРОВАНИЮ ФУНДАМЕНТОВ

2.1. Фундаменты под оборудование должны удовлетворять общим требованиям, изложенным в СНиП II-19-79, требованиям санитарных норм предельно допустимых вибраций для обслуживающего персонала, а также дополнительным требованиям, связанным со спецификой реконструкции.

2.2. Фундаменты под оборудование и заглубленные помещения в целом и их отдельные элементы должны удовлетворять условиям прочности, жесткости и устойчивости на всех этапах возведения и эксплуатации, а также не оказывать вредного влияния на соседние существующие конструкции.

2.3. Ввиду того, что строительство фундаментов при реконструкции связано со способом возведения, влияющим на прочность и устойчивость самого фундамента и примыкающих к нему существующих конструкций, в проектах должны быть приведены указания об этапах и порядке возведения. При этом в проекте должны быть оговорены конструкции, выполняемые:

- в доостановочный период;

- в период остановки производства;

- после выпуска производства.

2.4. Конструктивные решения, закладываемые в проект, должны предусматривать;

- проведение работ индустриальными методами;

- максимальную сборность применяемых конструкций;

- укрупненную сборку конструкций перед монтажом;

- снижение трудоемкости работ;

- применение стыковых соединений монтажных элементов с минимальным использованием «мокрых» процессов, препятствующих немедленному восприятию нагрузок от строительных конструкций и оборудования;

- мероприятия по ускорению процесса схватывания бетона в стыках (применение специальных добавок).

2.5. При реконструкции существующих фундаментов следует применять болты, устанавливаемые в просверленные скважины в готовых фундаментах с креплением их на виброзачеканке или эпоксидном клее.

2.6. Объем разрушаемого бетона существующего фундамента назначается в зависимости от заданной конфигурации фундамента, его прочности и технологии проведения работ.

2.7. При реконструкции фундаментов под оборудование необходимо следующее:

- поверхность старого бетона должна быть тщательно очищена от грязи и цементной пленки с промывкой водой;

- при отсутствии промасленного бетона в зоне контакта старого бетона с вновь укладываемым рекомендуется применение клеевых составов на контакте;

- при наличии промасленного бетона в зоне контакта старого бетона с вновь укладываемым проводится обработка зоны контакта в соответствии с указаниями п.1.10. настоящих Рекомендаций;

- установка поперечной арматуры в просверленные глухие отверстия в старом бетоне с последующей виброзачеканкой или закреплением ее на эпоксидном клее, при этом минимальный процент поперечного армирования принимается равным 0,15;

- при реконструкции фундаментов, подверженных динамическим нагрузкам, минимальный процент поперечного армирования принимается равным ( Rbt/ Rs) 100%, где Rbt- расчетное сопротивление бетона осевому растяжению, Rs - расчетное сопротивление арматуры растяжению.

2.8. При реконструкции фундаментов тепловых агрегатов с целью уменьшения усилий, вызванных воздействием температуры, следует предусматривать швы скольжения между старым и новым бетоном.

2.9. При проектировании свайных конструкций следует применять буронабивные, залавливаемые сваи и сваи, погружаемые в лидерные скважины.

2.10. Применение сборной железобетонной и металлической не извлекаемой опалубки, жестких металлических блоков должно быть экономически обосновано с учетом сокращения потерь действующего производства за счет сокращения срока реконструкции.

2.11. Снижение уровня колебаний реконструируемых фундаментов достигается проведением следующих конструктивных решений:

- изменение геометрической схемы фундамента путем установки распорок и диафрагм;

- увеличение размеров подошвы фундамента;

- усиление фундамента свайным ростверком;

- изменение массы элементов фундаментов в случае отстройки от резонанса;

- применение виброизоляторов.

2.12. При размещении в процессе реконструкции теплового агрегата вблизи существующих фундаментов следует при необходимости предусматривать их тепловую защиту.

3. УКАЗАНИЯ ПО РАСЧЕТУ ОСНОВАНИЙ И ФУНДАМЕНТОВ

3.1. В настоящем разделе содержатся только указания по расчету оснований, фундаментов под оборудование и заглубленных помещений. Эти указания являются дополнительными к общепринятым требованиям по расчету зданий и сооружений, фундаментов машин с динамическими нагрузками, а также по расчету элементов бетонных и железобетонных конструкций, регламентируемым соответствующими главами СНиП.

3.2. Среднее давление на основание фундамента р должно удовлетворять условию

                                                                           (1)

где и  -коэффициенты условий работы, равные соответственно то и mi по п.1.36.   СНиП II-19-79; - расчетное сопротивление грунта с учетом зоны упрочнения основания, определяемое по формуле

                                                                                                       (2)

где R - расчетное сопротивление грунта основания, определяемое в соответствии с требованиями СНиП 2.02.01-83.

Величина коэффициента  принимается в зависимости от отношения p/ R до реконструкции, где р - среднее давление, a R - расчетное сопротивление грунта основания и длительность эксплуатации tser фундамента ко времени реконструкции:

для фундаментов при отсутствии примыкающих подвалов при и , ;

для фундаментов с примыкающими подвалами при тех же условиях ;

при и   . При промежуточных значениях p/ R и tser -  принимается по интерполяции.

3.3. Определение жесткостных характеристик оснований, осадок и кренов фундаментов под оборудование на различных стадиях работ по реконструкции и в процессе эксплуатации с учетом влияния зоны упрочнения грунта в основании существующего фундамента (до его реконструкции) выполняется в соответствии с указаниями, приведенными в прил. 1.

3.4. Расчет прочности элементов реконструируемых фундаментов и заглубленных сооружений следует производить, руководствуясь требованиями СНиП 2.03.01-84; СНиП II-19-79.

При этом производится анализ расчетных схем сооружения и воздействий на него на всех стадиях его возведения и эксплуатации и выбираются наиболее опасные сочетания усилий в элементах конструкции.

3.5. При расчете прочности шва сопряжения существующего бетона с вновь укладываемым рекомендуется, чтобы величина продольного скалывающего напряжения т в шве не превышала

                                                                                               (3)

где Rbt - величина расчетного сопротивления растяжению менее прочного бетона из соединяемых элементов; n - коэффициент шероховатости поверхности сопряжения; равен 1 - для шероховатой поверхности сопряжения (имеющей, примерно, в равном количестве выступы и углубления не менее 10 мм, наибольший размер которых в плане не превышает 25% ширины шва сопряжения) или поверхности сопряжения со шпонками (размеры их назначают конструктивно) и 0,5 - для остальных поверхностей сопряжения; - коэффициент поперечного армирования шва стержнями, %; Asw - площадь сечения поперечных стержней, расположенных в одной, перпендикулярной к продольной оси элемента, плоскости, пересекающей поверхность сопряжения; b - ширина стыкуемых элементов по шву сопряжения; s - шаг поперечных стержней.

Рис. 1. Расчетная схема узла сопряжения элементов рамы

3.6. При частичной разборке существующего фундамента с последующей набетонкой и расширением усилия в элементах комбинированного фундамента определяются с учетом различной жесткости основания под существующей и пристраиваемой частями фундамента.

3.7. При устройстве облегченной стенчатой или рамной пристройки к существующему массивному фундаменту внутренние усилия в элементах пристройки определяются из расчета всей системы в целом, с учетом упрочнения грунта под существующей частью фундамента.

3.8. При установке на существующий фундамент конечной жесткости облегченной стенчатой или рамной конструкции производится расчет всей системы в целом с учетом податливости основания. При установке надстройки на жесткий фундамент производится расчет надстройки на жестком основании. В обоих случаях определяются усилия на контакте и назначаются конструктивные мероприятия по заделке новых частей в существующий фундамент, обеспечивающие невозможность отрыва и сдвиговых деформаций. Проверяется прочность существующей части фундамента.

3.9. При расчете рамных фундаментов с элементами, отношение высот которых к пролету больше 0,2, принимается расчетная схема в виде системы стержней, оси которых совпадают с геометрическими осями элементов фундамента. Площади поперечных сечений А и моменты инерции / сечений определяются в соответствии с их геометрическими размерами и конфигурацией. Стержни в области сопряжения элементов рамы разбиваются на два участка: бесконечно жесткий, примыкающий к точке пересечения геометрических осей, и участок конечной жесткости (рис. 1). Расчетная длина lcal, площадь поперечного сечения А cal момент инерции сечения lcal стержня конечной жесткости определяются по формулам:

                                                                               (4)

                                                                                  (5)

                                                                                (6)

где , , - коэффициенты, определяемые в зависимости от соотношений h/ hort, max и , ,по табл. 1; h, I, A - высота, момент инерции и площадь поперечного сечения стержня в свету на контакте с узлом сопряжения; , ,- максимальная и минимальная высоты поперечных сечений стержней, перпендикулярных рассматриваемому стержню на контакте с узлом сопряжения.

Расчет рамы производится с учетом продольных, изгибных и сдвиговых деформаций всех стержней, входящих в расчетную схему рамы. При этом перемещение по i-му направлению от р для плоской рамы может быть представлено зависимостью

                      (7)

где k - коэффициент, зависящий от формы поперечного сечения и неравномерности распределения касательных напряжений по сечению при изгибе, определяемый для стержней в свету по формуле

                                                             (8)

s - статический момент отсеченной части сечения; b - ширина сечения; Ni, Mi, Qi - продольные усилия, изгибающие моменты и поперечные усилия в стержне от действия i-й единичной нагрузки; Np; Mp; Qp - то же, от действия внешней нагрузки; G - модуль сдвига.

Для участков стержней конечной жесткости в узлах сопряжения значения kcal определяются по табл. I.

3.10. При подводках под существующие фундаменты новых частей или тоннелей расчет усилий в элементах фундамента и крепи производится с учетом совместных воздействий на эти элементы и основания. Расчет элементов крепи производится в соответствии с указаниями « Руководства по проектированию подземных горных выработок и расчету крепи» (М.: Стройиздат, 1983).

3.11. При устройстве нового фундамента в зоне расположения существующих фундаментов выполняется расчет влияния на них осадки от вновь возводимого фундамента.

Такую проверку допускается не производить в случаях, когда осадка основания на уровне подошвы существующего фундамента либо подошвы свайного ростверка у обреза существующего фундамента не превышает 20% расчетной осадки существующего фундамента.

При размещении вблизи существующих фундаментов новых источников нагрева (высокотемпературных боровов, газоходов, труб, фундаментов тепловых агрегатов и др.) следует проводить расчет оснований с учетом температурно-усадочных деформаций грунтов.

3.12. При использовании шпунтового ограждения либо других конструкций, как ограждений стенки котлована, следует определить горизонтальные, вертикальные перемещения и крены рядом стоящих существующих фундаментов. При этом крены высоких и жестких сооружений и т.п. определяются с учетом величин перемещений, происшедших в процессе эксплуатации к моменту реконструкции.

γh

γi

γa

kcal

1/8

0

0,389

2,34

0,708

0,73

0,25

0,377

2,32

0,698

0,724

0,5

0,324

2,18

0,634

0,709

0,75

0,259

1,93

0,556

0,67

1

0,106

0,97

0,265

0,614

1/4

0

0,47

1,59

0,677

0,774

0,25

0,455

1.57

0,664

0,766

0,5

0,389

1,45

0,593

0,752

0,75

0,31

1,27

0,507

0,741

1

0,132

0,645

0,241

0,694

1/2

0

0,502

1,07

0,619

0,826

0,25

0,485

1,05

0,604

0,82

0,5

0,413

0,957

0,533

0,81

0,75

0,33

0,82

0,442

0,791

1

0,152

0,431

0,218

0,776

1

0

0,527

0,817

0,59

0,89

0,25

0,509

0,798

0,572

0,885

0,5

0,431

0,707

0,496

0,878

0,75

0,345

0,595

.0,408

0,854

1

0,173

0,326

0,214

0,837

2

0

0,537

0,682

0,571

0,943

0,25

0,518

0,662

0,552

0,94

0,5

0,457

0,597

0,492

0,93

0,75

0,35

0,475

0,383

0,913

1

0,187

0,268

0,209

0,883

4

0

0,547

0,62

0,563

0,978

0,25

0,526

0,599

0,542

0,976

0,5

0,462

0,533

0,48

0,972

0,75

0,353

0,3362

0,37

0,965

1

0,191

0,232

0,203

0,954

8

0

0,553

0,59

0,561

1,04

0,25

0,532

0,568

0,54

1,04

0,5

0,466

0,501

0,475

1,04

0,75

0,355

0,267

0,367

1,04

1

0,196

0,217

0,202

1,03

Определение усилий и перемещений в расчетных сечениях ограждения (шпунт, сваи) производится в соответствии с « Руководством по проектированию и устройству заглубленных инженерных сооружений» (М.: Стройиздат, 1986). Определение величин смещения можно не производить при ограничении конструктивными решениями горизонтальных смещений ограждающих конструкций до 2 см для фундаментов и сооружений, в конструкциях которых не возникают дополнительные усилия от неравномерных осадок, и до 1 см для конструкций, в которых такие усилия возникают.

3.13. Фундаменты под оборудование, возводимые методом опускного колодца, должны располагаться таким образом, чтобы основания фундаментов размещенных рядом зданий, сооружений и оборудования находились вне зоны обрушения грунта.

3.14. Фундаменты, располагаемые рядом с опускным колодцем, следует размещать на расстоянии b, определяемом по формуле

                                                                                                   (9)

где z-расстояние по вертикали от верха ножа колодца до подошвы фундамента;

                                                                        (10)

где  - угол внутреннего трения грунта.

При положении фундаментов на расстоянии от опускного колодца, меньшем b, площадь опирания фундаментов необходимо принимать без учета подошвы, находящейся в зоне нарушаемого грунта, ограниченной размером b.

В этом случае допускается компенсировать уменьшение площади опирания фундамента уширением или углублением его. Допускается также подошву фундамента, находящуюся в зоне нарушенного грунта, опирать на свайное основание. Минимальное расстояние от крайнего ряда свай bpit до опускного колодца следует назначать из условия

                                                              (11)

где  - расстояние по вертикали от верха ножа колодца до уровня острия свай.

3.15. При реконструкции фундаментов и возведении новых фундаментов вблизи от существующего опускного колодца производится проверка прочности элементов колодца на действие дополнительных нагрузок в соответствии с указаниями «Руководства по проектированию спускных колодцев, погружаемых в тиксотропной рубашке» (М.: Стройиздат, 1979).

3.16. При определении амплитуды колебаний фундаментов и отдельных их элементов следует использовать жесткостные характеристики элементов, определенные экспериментально.

3.17. Определение температур в элементах фундаментов производится для следующих стадий:

- длительный нагрев до реконструкции;

- остывание в период реконструкции;

- нагрев после реконструкции.

Распределение температур устанавливается в соответствии со СНиП 2.03.04-84. Характер распределения температур в элементах конструкций фундаментов прокатного производства в зависимости от расположения температурного источника приведен в «Руководстве по проектированию фундаментов оборудования и сооружений подземного хозяйства прокатных и трубных цехов» (М.: Стройиздат, 1985).

3.18. Для фундаментов, состоящих из старого и нового бетонов, расчет распределения температур в новом бетоне допускается проводить по формуле

                                                                (12)

где  и  - температура влажного (нового) и сухого (старого) бетона; γ - коэффициент определяется по формуле

                                                 (13)

но не более 1; t-толщина слоя нового бетона; ti - время нагрева.

Расчет распределения температуры  в старом бетоне проводится по физико-механическим характеристикам старого бетона.

Пересчет значений температур t, ei к температурам I °С производится по формуле

                                                 (14)

где  - температура наиболее нагретой поверхности, tmin - начальная температура нагрева. Допускается принимать  = 10 °С.

3.19. Расчет распределения температуры и влажности в сечениях железобетонных элементов фундаментов в стационарном периоде нагрева допускается производить раздельно. При этом распределение температуры рассчитывается по СНиП II-3-79** с использованием характеристик сухого грунта и бетона.

3.20. Для фундаментов прокатного оборудования изгибающие моменты от неравномерного нагрева по высоте сечения в стержневых элементах определяются по «Руководству по проектированию фундаментов оборудования и сооружений подземного хозяйства прокатных и трубных цехов» (М.: Стройиздат, 1985).

3.21. Температурная кривизна оси элемента при первом после реконструкции нагреве определяется с учетом усадки нового бетона, расположенного в более нагретой зоне, по формуле

                                                 (15)

При расположении нового бетона в менее нагретой зоне температурная кривизна оси элемента определяется по формуле

                                              (16)

где , , , - коэффициенты температурной деформации и температурной усадки нового бетона, принимаемые по СНиП 2.03.04-84 в зависимости от температуры менее и более нагретой грани сечения; ,  - температура менее и более нагретой грани сечения; h- высота сечения элемента.

3.22. Температурная кривизна оси элемента при повторном нагреве определяется по формуле (15), коэффициент температурной деформации нового и старого бетона принимают в виде суммы значений .

4. КОНСТРУКТИВНЫЕ РЕШЕНИЯ

Использование существующих фундаментов при реконструкции

4.1. Использование существующих массивных фундаментов при реконструкции сводится: к пристройке новой части к существующему, фундаменту; в надстройке существующего фундамента; к комбинации этих вариантов, что предусматривает следующие конструктивные решения:

- разборка верхней изменяемой части существующего фундамента и выполнение фундамента новой конфигурации в монолитном железобетоне ( рис. 2);

- пристройка к существующему фундаменту (с его частичным разрушением) новых частей ( рис. 3);

- изменение конфигурации существующего фундамента за счет монолитной набетонки, укладываемой поверх фундамента ( рис. 4);

- подводка тоннеля под существующий фундамент методом шахтной проходки ( рис. 5);

- возведение на части существующего фундамента облегченных стенчатых или рамных конструкций из сборного или монолитного железобетона ( рис. 6);

- разборка изменяемой части фундамента и установка на оставшейся

- части жестких металлических блоков, способных принять нагрузку от оборудования ( рис. 7).

Возможна полная разборка существующего фундамента, приспособление которого по техническим или экономическим причинам признано нецелесообразным, и размещение на его месте нового фундамента под оборудование.

Блоки собираются на специальных стендах в стороне от фундаментов, полностью оснащаются металлической опалубкой, закладными частями и анкерными болтами. Готовый блок устанавливается в проектное положение мостовыми или строительными кранами, выпуски из существующего фундамента привариваются к элементам каркаса блока. После установки, выверки и закрепления блоков производится установка оборудования с одновременным заполнением полостей блоков монолитным бетоном.

Сохранение габаритов существующих фундаментов с установкой анкерных болтов под вновь устанавливаемое оборудование методом виброзачеканки цементным раствором или на эпоксидном клее.

4.2. Приспособление облегченных существующих фундаментов производится путем замены верхней плиты фундамента ( рис. 8,б), пристройки новой части фундамента ( рис. 8,в), пристройки новой части фундамента с одновременной заменой верхней плиты ( рис. 8,г).

Маркировочные схемы узлов сопряжения новых частей фундаментов с существующими и конструктивные решения этих узлов приведены в прил. 2.

Использование существующих заглубленных помещений при реконструкции

4.3. При расширении заглубленного помещения в районе примыкания к существующим фундаментам мелкого заложения рекомендуются следующие конструктивные решения:

возведение конструкций расширяемой части в котловане с временным шпунтовым ограждением ( рис. 9,б);

расширение помещения с применением стенового ограждения из свай.

При расширении помещения с применением свай ( рис. 9,в) в проекте должны быть предусмотрены следующие этапы работ:

- открытие пионерного котлована;

- выполнение скважин по контуру сооружения;

- забивка готовых свай или бетонирование буронабивных свай;

- изготовление железобетонного пояса по верху свай;

- разработка котлована с установкой временных распорок после набора бетоном требуемой прочности;

- бетонирование днища помещения;

- демонтаж распорок;

- приварка к закладным частям свай выпусков арматуры и бетонирование стен помещения;

- монтаж перекрытия.

4.4. Заглубление существующего подвального помещения следует выполнять с применением свай или методом подращивания. При этом в проекте с применением свай ( рис. 10) должны быть отражены следующие основные этапы работ:

- по контуру проектируемого заглубления в днище котлована бурятся шпуры, в которых закрепляются выпуски арматуры, после чего по контуру углубления бетонируется обвязочный пояс (воротник);

Рис. 2. Фундамент с измененной верхней частью а, б - фундамент до и после реконструкции соответственно; 1 - разрушаемая часть существующего фундамента; 2 - используемая часть существующего фундамента; 3 - новая часть фундамента

Рис. 3. Фундамент с пристроенными новыми частями а, б - фундамент до и после реконструкции соответственно; 1 - разрушаемая часть существующего фундамента; 2 - используемая часть существующего фундамента; 3 - новая часть фундамента

Рис. 4. Фундамент с набетонкой поверх существующего фундамента. 1 - существующий фундамент; 2 - монолитная набетонка

Рис. 5. Подводка тоннеля под существующий фундамент методом шахтной проходки 1, 2 - существующий фундамент под оборудование и колонну здания соответственно; 3 - вертикальная шахтная проходка; 4 - горизонтальная шахтная проходка

Рис. 6. Возведение на существующем фундаменте облегченных конструкций рамного типа 1 - существующий фундамент; 2 - монолитный бетон; 3 - конструкции рамного (стенчатого) типа

- после набора бетоном воротника требуемой прочности внутри воротника разбирается днище подвала;

- по контуру заглубления бурятся лидерные скважины, в которые забиваются сваи;

- головы свай объединяются с ранее выполненным обвязочным поясом;

- производится поэтапная разборка котлована с установкой временных распорок;

- при достижении проектной отметки выполняется днище углубленной части;

- к закладным частям привариваются выпуски арматуры, демонтируются временные распорки и бетонируются стены заглубленной части подвала.

Рис.7. Существующий фундамент с применением жестких металлических блоков а, б, в - фундамент до, во время и после реконструкции соответственно; 1 - разбираемая часть фундамента; 2 - используемая часть фундамента; 3 - укрупненный металлический блок; 4 - новая часть фундамента

Рис. 8. Облегченный фундамент а - фундамент до реконструкции; б - реконструкция с заменой верхнего перекрытия; в - реконструкция с пристройкой новой части; г - реконструкция с заменой верхнего перекрытия и пристройкой новой части; 1 - используемая часть существующего фундамента; 2 - новая часть фундамента

При разработке проекта заглубления существующего подвального помещения методом подращивания к нему должны быть предусмотрены следующие этапы работ ( рис.11):

- в существующем днище по наружному контуру проектируемого заглубления сверлятся шпуры, в которые забиваются выпуски арматуры;

- по наружному периметру проектируемого заглубления бетонируется обвязочный пояс (воротник);

- после набора бетоном воротника проектной прочности в пределах проектируемого заглубления разбирается днище помещения;

- производится поярусная разработка котлована методом подращивания с одновременным креплением ограждающих конструкций и инъектированием пазух цементным раствором;

- при достижении проектной отметки бетонируется днище.

Рис. 9. Расширение подвала в районе примыкания к существующим фундаментам а - задание на проектирование; б - расширение подвала под защитой шпунтового ограждения; в - расширение подвала с применением стенового ограждения из свай; г - деталь стены; 1 - существующий подвал; 2 - контур проектируемого расширения; 3 - существующие фундаменты; 4 - шпунт; 5 - днище; 6 - перекрытие; 7 - сборные стены подвала; 8 - свая; 9 - обвязочный железобетонный пояс; 10 - распорки; 11 - монолитный бетон; 12 - закладные части

Рис. 10. Углубление подвала с применением сван а - строительное задание на проектирование; б, в - этапы реконструкции; 1 - существующий подвал; 2 - контур проектируемого заглубления; 3 - днище; 4 - разрушаемый бетон; 5 - железобетонный пояс; 6 - буронабивные (бурозабивные) сваи; 7 - распорки; 8 - обетонировка стен

Рис. 11. Углубление существующего подвала методом подращивания а - строительное задание на проектирование; б, в - этапы реконструкции; 1 - существующий подвал; 2 - контур проектируемого заглубления; 3 - существующий фундамент; 4 - железобетонный пояс; 5 - разрушаемый бетон; 6 - обделка; 7 - днище

Проектирование новых фундаментов под оборудование в условиях реконструкции

4.5. При возведении новых фундаментов под оборудование на свободных площадях действующего цеха возводятся массивные фундаменты неглубокого заложения ( рис. 12,а); фундаменты-приямки ( рис. 12,б), фундаменты траншейного типа ( рис. 12,в), фундаменты эстакадного типа ( рис. 12,г, д) и фундаменты подвального типа ( рис. 12,е).

Рис. 12. Проектирование фундаментов под оборудование на свободных площадях действующего цеха а - массивный фундамент неглубокого заложения из сборных блоков; б - фундаменты-приямки; в - фундаменты траншейного типа; г, д - фундаменты эстакадного типа; е - фундамент подвального типа

Рис. 13. Установка сборных опорных конструкций со смонтированным на них оборудованием а - конструктивное решение комбинированного железобетонного фундамента укрупненного оборудования; б - конструктивное решение узла крепления станины оборудования к опорной конструкции (узел А); 1 - опорная конструкция; 2 - подливка из бетона; 3 - жесткий подстилающий слой пола; 4 - основание; 5 - анкерный болт для крепления опорной конструкции к жесткому подстилающему слою пола; 6 - закладная деталь из арматуры периодического профиля; 7 - гнездо под крепежный болт

Возможна установка сборных железобетонных опорных конструкций со смонтированным на них оборудованием.

На заводе-изготовителе осуществляется укрупненная сборка элементов оборудования на опорные конструкции, которые подаются в виде законченного технологического блока на объект реконструкции ( рис. 13).

4.6. При проектировании на слабых грунтах фундаментов мелкого заложения (по требованиям технологии) в районе существующих свайных фундаментов рекомендуются следующие конструктивные решения:

- фундамент в виде опускного колодца ( рис. 14,б);

- свайный фундамент под оборудование ( рис. 14,в);

- опирание фундамента на рамную облегченную конструкцию, возводимую со шпунтовым ограждением ( рис. 14,г).

4.7. При проектировании фундаментов мелкого заложения в районе размещения существующих фундаментов глубокого заложения, опирающихся на несущий грунт, применяются следующие конструктивные решения:

- свайные фундаменты ( рис. 15,б);

- облегченные фундаменты подвального типа с опиранием на несущий грунт ( рис. 15,в);

4.8. При необходимости размещения новых фундаментов над существующими тоннелями, каналами и другими коммуникациями применяются фундаменты рамного типа с опиранием стоек на несущий грунт ( рис. 16).

4.9. При необходимости размещения фундаментов глубокого заложения в непосредственной близости от существующих фундаментов мелкого заложения рекомендуется применять следующие конструктивные решения:

- фундамент в виде опускного колодца ( рис. 17,б);

- фундамент подвального типа стенчатой или рамной конструкции в котловане под защитой шпунтового ограждения ( рис. 17,в);

- фундаменты эстакадного типа на буронабивных сваях ( рис. 17,г).

4.10. Фундаменты эстакадного типа на буронабивных сваях рекомендуется выполнять в следующем порядке:

- открытие пионерной траншеи;

- бурение скважин;

- бетонирование буронабивных свай;

- возведение монолитной (сборно-монолитной) части фундамента в виде продольных балок;

- разработка грунта до проектной отметки пола подвала;

- бетонирование пола подвала.

4.11. При проектировании фундаментов глубокого заложения в районе существующих свайных фундаментов следует использовать способы опускного колодца «стена в грунте» или шпунтовое ограждение ( рис. 17,б, в).

4.12. При проектировании фундаментов, требующих глубокого заложения, в районе размещения инженерных сетей, технологических коммуникаций и т.п. следует предусматривать предварительный перенос коммуникаций и полную разработку существующих конструкций (каналов, тоннелей, кабельных блоков и т.п.).

Рис. 14. Конструктивные решения фундаментов мелкого заложения в районе существующих свайных фундаментов а - задание на проектирование; б - фундамент в виде опускного колодца; в - свайный фундамент; г - облегченный фундамент подвального типа; 1 - контур проектируемого фундамента; 2 - существующий фундамент; 3 - существующие сваи; 4 - проектируемые сваи; 5 - проектируемый фундамент; 6 - опускной колодец,; 7 - засыпка с уплотнением; 8 - проектируемый фундамент подвального типа; 9 - шпунтовое ограждение

4.13. При проектировании фундаментов, у которых верхняя поверхность должна быть ниже подошвы стоящих существующих фундаментов под оборудование, рекомендуется усиливать основание существующих фундаментов сваями ( рис. 18).

При этом проектом должны быть предусмотрены следующие этапы возведения сооружения:

- разработка пионерного котлована;

- временная разборка части существующего фундамента, непосредственно примыкающего к вновь проектируемому;

- бурение скважин под сваи;

- устройство свайного основания;

- отрытие котлована до отметки верха проектируемого фундамента;

- возведение подбудки до уровня подошвы существующего фундамента;

- восстановление разрушенной части существующего фундамента;

- возведение проектируемого фундамента.

Рис. 15. Конструктивные решения фундаментов мелкого заложения при размещении их вблизи существующих фундаментов глубокого заложения а - задание на проектирование; б - свайные фундаменты; в - облегченные фундаменты подвального типа с опиранием на несущий грунт; 1 - контур проектируемого фундамента; 2 - существующие фундаменты под здание; 3 - существующие фундаменты под оборудование; 4 - проектируемый фундамент; 5 - буронабивные сваи; 6 - проектируемый облегченный фундамент подвального типа

Рис. 16. Размещение фундаментов над существующими тоннелями а - задание на проектирование; б - фундамент рамного типа; 1 - контур проектируемого фундамента; 2 - существующий тоннель; 3 - проектируемый фундамент рамного типа

Рис. 17. Конструктивные решения при размещении фундаментов глубокого заложения вблизи существующих фундаментов мелкого заложений а - задание на проектирование; б - опускной колодец; в - стенчатый фундамент; г - эстакадный фундамент; 1 - существующий фундамент под колонну здания; 2 - контур проектируемого фундамента; 3 - опускной колодец; 4 - шпунт; 5 - стенчатый фундамент; 6 - стена из свай; 7 - свая-стойка; 8 - железобетонная балка; 9 - пол

При невозможности по производственным причинам временного разрушения существующего фундамента перед возведением вновь проектируемого фундамента предварительно укрепляют основание существующего фундамента методом проходки.

Рис. 18. Конструктивное решение при размещении фундамента с отметкой верхней поверхности ниже подошвы существующего фундамента а - строительное задание; б, в, г - этапы возведения фундамента; 1 - существующий фундамент под оборудование; 2 - контур проектируемого фундамента; 3 - скважина; 4 - свая; 5 - восстановленная часть фундамента; 6 - подбудка; 7 - проектируемый фундамент; 8 - разрушаемый бетон

Проектирование новых заглубленных помещений в условиях реконструкции.

4.14. При необходимости размещения нового заглубленного помещения вблизи объектов подземного хозяйства, отметки подошв которых выше отметок днища вновь проектируемого сооружения, заглубленное помещение рекомендуется выполнять в котловане со шпунтовым ограждением ( рис. 19) либо применять сваи в качестве стен ограждения подвала ( рис. 20).

4.15. При возведении заглубленного помещения в котловане со шпунтовым ограждением в проекте должны найти отражение следующие этапы его возведения:

- устройство шпунтового ограждения;

- поэтапная разработка котлована с установкой временных распорок; бетонирование днища подвала в распор со шпунтовыми стенками;

- монтаж сборных стеновых панелей и бетонирование, монолитных участков стен в местах распорок;

- обратная засыпка грунтом пазух между шпунтом и стенами подвала;

- монтаж перекрытия, демонтаж распорок и извлечение шпунта.

Рис. 19. Возведение подвала в существующем цеху с применением шпунтового ограждения а, б, в - последовательность этапов возведения; 1 - существующий фундамент под оборудование; 2 - существующий фундамент колонны здания; 3 - шпунт; 4 - распорки; 5 - днище; 6-панели стен; 7 - перекрытие.

Рис. 20. Возведение подвала в существующем цеху с применением свайного ограждения а; б, в- последовательность этапов возведения; 1 - существующий фундамент под оборудование; 2-существующий фундамент под колонну; 3-свая; 4-обвязочный пояс; 5-распорка; 6-днище; 7-бетонная стена

4.16. При применении свай в качестве стенового ограждения

- в проекте должны быть предусмотрены следующие этапы возведения сооружения:

- разработка пионерного котлована;

- бурение скважин;

- устройство свайного стенового ограждения;

- бетонирование обвязочной балки по верху голов свай;

- поэтапная разработка котлована с установкой временных распорок;

- бетонирование днища;

- зачистка закладных частей свай и приварка к ним выпусков арматуры;

- монтаж перекрытия, демонтаж распорок, бетонирование стен.

5. ТЕХНИКО-ЭКОНОМИЧЕСКАЯ ОЦЕНКА ВАРИАНТОВ РЕКОНСТРУКЦИЙ ФУНДАМЕНТОВ

5.1. На основе исходных материалов и технических условий на проектирование производится разработка возможных вариантов реконструкции фундаментов.

Варианты разрабатываются с одинаковой степенью подробности, чтобы можно было с равной достоверностью определить объемы, работ и порядок их производства. При этом количество людей и механизмов из каждом этапе реконструкции должно определяться максимально возможным исходя из наличия фронта работ и требований техники безопасности.

При определении объема работ должна быть дана краткая характеристика каждого конструктивного, элемента, позволяющая произвести достоверный расчет стоимости материалов и работ по возведению фундаментов.

5.2. Технико-экономическая оценка вариантов реконструкции, определение приведенных затрат, трудоемкости и других показателей для каждого варианта производится в соответствии с СН 423-71 при сравнении традиционных решений.

При оценке варианта с технически новым решением следует использовать СН 509-78.

Наиболее рациональным решением считается то, которое обеспечивает минимум приведенных затрат.

5.3. В случае, когда реконструкция фундаментов требует, частичной или полной остановки производства, для каждого варианта следует разработать проект производства работ с определением длительности остановки производства.

5.4. На основе объемов работ, размера среднегодовой прибыли и времени остановки реконструируемого производства определяется уровень приведенных затрат и потери текущего производства.

5.5. Наиболее рациональным решением следует считать вариант, при котором сумма приведенных затрат и потерь текущего производства за время реконструкции будет минимальной.

ПРИЛОЖЕНИЕ 1

Расчет осадок, кренов и переменных коэффициентов жесткости оснований реконструируемых фундаментов

Основные положения

1. Расчет оснований фундаментов, реконструируемых без расширения подошвы или расширяемых при реконструкции с одной или нескольких сторон, производится по методу интегральных дискретных элементов.:

2. Основание реконструируемого фундамента моделируется слоем конечной толщины.

3. Слой конечной толщины условно расчленяется вертикальными плоскостями на дискретные элементы. В плоскостях раздела основания на элементы вводятся неизвестные вертикальные сдвиговые силы взаимодействия, определяемые из решения систем уравнений совместимости деформаций дискретных элементов.

 4. Дискретные элементы основания описываются интегральными параметрами сопротивления расчетного слоя основания сжатию С1 и сдвигу С2. В расчетах используется параметр распределительной способности расчетного слоя основания

Интегральные параметры С1 и S, в общем случае различные для дискретных элементов системы, имеют постоянные значения в пределах каждого элемента.

5. Расчет оснований реконструируемых фундаментов производится по нескольким стадиям, отвечающим различным состояниям системы «фундамент - основание».

6. Усилия в фундаментной конструкции определяются решением контактной задачи расчета системы «фундамент - основание», где основание представлено переменными коэффициентами жесткости, в численных величинах которых учитывается сопротивление расчетного слоя основания сжатию, влияние распределительной способности основания, влияние соседних фундаментов, нагрузок на полях, наличие подвалов и т. п.

Определение расчетной глубины зоны деформирования основания

7. Расчетная глубина Н зоны деформирования основания определяется для каждой стадии расчета:

для фундаментов площадью до 40 м2 - по п. 6 прил. 2 СНиП 2.02.01-83; для фундаментов площадью 40 - 100 м - по формуле

                    (1)

где А1 = 40 м2; А2 - 100 м2; А - площадь подошвы фундамента, для которого определяется Н;

для фундаментов площадью более 100 м2 - по п. 8 прил. 2 СНиП 2.02.01-83.

8. Для случаев, когда основание сложено обычными (модуль деформации Е≥10 МПа) и слабыми грунтами, расчетная глубина Н зоны деформирования основания определяется отдельно при вычислениях параметров С1 и S с учетом данных, приведенных в табл. 1.

Таблица 1

Модули деформации грунтов Е, МПа, и толщины слоев h , м

Расчетная глубина зоны деформирования основания Н, м

Слагающие слои

Подстилающие слои

основные

слабые

весьма слабые

для определения С 1

для определения S

Е≥10

h 1

5≤ E ≤10

h 2 ≤0,25H

-

h 3

Е ≥10

h 4

H

Н - 0,5 h 2

Е≥10

h 1

-

h 2

E

- 4,947

Для приближенного расчета в условиях плоской задачи значения К (х, у) в направлении у усредняем, пренебрежимо малые величины опускаем. Получаем

                     (2)

III стадия расчета основания реконструируемого фундамента

Реконструируемый фундамент возводится на оставшейся части фундаментной плиты размером 16×10,8 м. Объем в зоне изъятия части фундамента на удаленном участке плиты размером 2×10,8 м заполняется грунтом.

Расчетная схема аналогична принятой для II стадии расчета, так как размеры подошвы реконструируемого фундамента те же, что и оставшейся части, интегральные параметры основания те же (нагрузки одного порядка изменений расчетной глубины зоны деформирования не вызывают, модуль вторичной деформации и модуль вторичной деформации упрочненного грунта принимаются практически равными). В расчетной схеме изменяются нагрузки:

Рис. 12. Расчетная схема. Разрез I - I. III стадия расчета

Рис. 13. Схема фундамента с приложенными внешними нагрузками и сдвиговыми силами. III стадия расчета

нормальные силы (11 330 кН) направлены вниз, момент силы (9260 кН/м) направлен против часовой стрелки, нагрузка от грунта на площадке удаленного участка фундаментной плиты (120 кПа) направлена вниз.

Членение основания на дискретные элементы, обозначение элементов, направление и обозначение сдвиговых сил взаимодействия, приведены на рис. 12.

Система уравнений совместности деформаций дискретных элементов остается такой же, как и на II стадии расчета. Сохраняются и величины коэффициентов при неизвестных. Изменяются перемещения от внешних нагрузок, вычисление которых приведено в табл. 6. Значения Δ i p определены при С1 = 7020 кН/м3.

Подставив в систему уравнений значения вычисленных коэффициентов и разрешив ее, получаем следующие значения сдвиговых сил: Y12 = 227,8 кН; X21 = 101,7 кН; Х22 = -175,3 кН; Y22 = -2434,8 кН; Х31 = -725,5 кН; Х32 = 537,6 кН; Х33 = -116,5 кН.

Перемещения кромок фундамента от действия сил, приложенных к нагруженному элементу основания, рис. 13, определяем по формулам, денным в табл. 4 прил. 1.

В плоскости действия сдвиговых сил Y22

В плоскости действия сдвиговых сил Х32

В плоскости действия сдвиговых сил X33

Таблица 5

Плоскость

действия силы

загруженного элемента

Длина элемента l , м

Ширина элемента b ,   м

Нагру зка, вызывающая перемещение

формулы

∆ ip *10 3 ,м

Σ∆ ip * 10 3 ,м

Плоскость

действия силы

загруженного элемента

N , кН

M , кН*м

q , кН*м

Y 12

12

22

18

18

10,8

-

-

-

-

-

-

( 10 )

( 12 )

0

0

О

X 21

21

22

18

10,8

10,8

-

-

-

-

-

-

( 10 )

( 12 )

0

0

0

Х22

22

23

18

10,8

10,8

-

-

-

-

-

-

( 12 )

( 10 )

0

0

0

Y 22

22

33

18

16

10,8

10,8

-

11330

-

-

-

-

( 12 )

( 17 )

0

93,4

93,4

X 31

31

32

10,8

10,8

2

-

-

-

-

-

120

( 10 )

( 1 )

0

171

171

X 32

32

33

33

10,8

16

16

2

10,8

10,8

-

11330

-

-

-

9260

120

-

-

( 1 )

( 14 )

( 15 )

-171

93,4

28,7

- 48,9

X 33

33

33

34

16

16

10,8

10,8

10,8

11330

-

-

-

9260

-

-

-

-

( 14 )

( 15 )

( 10 )

93,4

-28,7

0

64,7

.

Определяем сдвиговые силы при единичном перемещении фундамента по формулам ( 27), ( 28) прил. 1.

Определяем переменные коэффициенты жесткости основания по формуле ( 35) прил. 1.

Для приближенного расчета в условиях плоской задачи значения K (х, у) в направлении Y усредняем, пренебрежимо малые величины опускаем и получаем

                   (3)

Расчетные схемы, комбинации нагрузок, жесткостные характеристики

Расчетные схемы фундаментов для I, II, III стадий расчета представлены на рис. 14- 16.

Рис. 14. Расчетная схема и переменные коэффициенты жесткости основания; I стадия расчета

Рис. 15. Расчетная Схема и переменные коэффициенты жесткости основания; II стадия расчета

Рис. 16. Расчетная схема и переменные коэффициенты жесткости основания, III стадия расчета

Таблица 6

элемента на расчетной схеме

№ разреза

Площадь поперечного сечения,

м2

Высота стен, м

Объем

стен, м'*

Нагрузка от собственного веса элементов фундамента

нормативная

расчётная

q n

кН/м

G n ,

кН

q cal ,

кН / м

G cal ,

кН

1

1-1

5-5

23,92

28,08

-

-

598

702

-

657,8

772,2

-

2

4-4

2-2

24,84

21,16

-

-

621

529

-

683,1

581,9

-

3

4-4

3 - 3

24,84

18,86

-

-

621

471

-

683,1

518,7

-

4

4-4

24,84

-

-

621

-

682,1

-

6

5-5

5,4

3,4

18,4

459

-

504,9

7

5-5

8,64

1,1

9,5

-

238

-

261,3

94

7-7

6-6

17,6

21,6

-

-

440

540

-

 484 .

594

-

95

8-8

9-9

14.08

17,28

-

-

352

432

-

387,2

475,2

-

96

11-11

23,76

-

-

594

-

653,4

-

97

11-11

10-10

23,76

17,6

-

-

594

440

-

653,4

484

-

б1

12-12

5,4

4

21,6

-

540

-

594

Таблица 7

№ элемента на рас-

четной схеме

Жесткостные характеристики соответствующих основных элементов

Коэффициенты

Расчетная длина lcal ,

м

Расчетные жесткостные характеристики узловых элементов

EA ·10 -4 , MH

EI ·10 -4 , MH· М 2

γ h

γ I

γ а

EAcal ·10 -4 , MH

EIcal ·10 -4 , MH· М 2

8

77,22

43,5

0,56

0,62

0,59

0,14

43,31

26,77

9

68,31

30,11

0,56

0,62

0,58

0,14

39,8

14,07

10

14,85

0,3

0,43

1,94

0,36

0,66

5,33

0,58

11

14,85

0,3

0,211

0,77

0,27

0,27

3,97

0,23

12

14,85

0,3

0,13

0,68

0,23

0,15

3,36

0,2

13

14,85

0,3

0,46

1,77

0,4

0,53

5,9

0,53

14

14,85

0,3

1,17

0,4

0,22

0,05

3,25

0,12

15

14,85

0,3

0,52

0,922

0,51

0,15

7,51

0,28

16

23,76

1,27

0,53

0,74

0,53

0,16

12,43

0,94

17

23,76

1,27

0,51

1,05

0,51

0,15

12,01

1,33

18

17,82

0,52

0,51

0,99

0,5

0,2

8,89

0,51

19

17,82

0,52

0,53

0,76

0,52

0,13

9,29

0,4

20

17,82

0,52

0,39

0,73

0,36

0,16

6,46

0,38

На I стадии расчета рассматриваются 3 комбинации нагрузок:

1 - постоянные нагрузки от собственного веса конструкций фундамента и временные длительные нагрузки от веса оборудования и бокового давления грунта, что соответствует фазе эксплуатации существующего фундамента;

2 - постоянные нагрузки от собственного веса элементов фундамента и временные длительные от веса оборудований, что соответствует фазе эксплуатации фундамента после выемки грунта в осях 1,6;

3 - постоянные нагрузки от собственного веса конструкций фундамента и кратковременные нагрузки от веса оборудования; боковое давление грунта не учитывается, что соответствует фазе работы фундаментов в процессе выемки грунта в осях 1,6 и демонтажа оборудования.

На II стадии расчета рассматриваем одну комбинацию нагрузок - места расчленения конструкции фундамента загружаются усилиями, определенными для этих сечений из расчета по комбинации 2.

Из результатов по схеме 2 вычитаются значения, полученные при расчете. Полученный результат соответствует напряженно-деформированному состоянию не разбираемой части фундамента.

На III стадии расчета фундамент загружается постоянными нагрузками от собственного веса новых элементов фундамента, нагрузками от бокового давления грунта и кратковременными нагрузками от оборудования, что соответствует напряженно-деформированному состоянию новых частей фундамента в процессе монтажа оборудования и эксплуатации. Для определения усилий в сохраненной части фундамента, усилия, полученные в ней при расчете по II стадии, складываются с усилиями, полученными при расчете по III стадии.

Расчетные нагрузки от веса оборудования определяются умножением значений нагрузок, выданных заводом-изготовителем на коэффициент надежности по нагрузке 1,2. Расчетные нагрузки от бокового давления грунта определены с учетом коэффициента надежности по нагрузке 1,3. Результаты расчета нагрузок от собственного веса элементов фундаментов даны в табл. 6, а жесткостные характеристики основных элементов рамы (в свету) - в табл. 7.

Определение геометрических и жесткостных характеристик элементов конечной жесткости в узлах сопряжения выполнено в соответствии с указаниями п. 3.8. Результаты расчета даны в табл. 8.

Таблица 8

№ элемента

расчетной схемы

№ разреза

Геометрические характеристики

основных элементов рам

поперечное сечение

площадь, м 2

момент инерции, м 2

ширина, м

высота, м

1

1-1

9,2

2,6

23,92

13,47

2

2-2

9,2

2,3

21,16

9,33

3

3-3

8,2

2,3

18,86

8,31

4

4-4

10,8

2,3

24,84

10,95

5

5-5

10,8

0,6

6,48

0,19

6; 6'

5-5; 12-12

10,8

0,5

5,4

0,11

7

5-5

10,8

0,8

8,64

0,46

94

7-7

8,8

2

17,6

5,87

95

8-8

8,8

1,6

14,08

3

96

11 - 11

10,8

2,2

23,76

9,58

97

10-10

8

2,2

17,6

7,01

Таблица 9

I стадия

II стадия

III стадия

элемента на расчетной схеме

Ордината

эпюры,

K ( x , y ).

М Н /м 3

Шаг

стержней, м

Жесткость

элемента ЕА, МН

элемента на расчетной схеме

Ордината

эпюры K ( x , y ).

М H /м 3

Шаг

стержней,

м

Жесткость

элемента ЕА, МН

№ элемента на расчетной схеме

Ордината

эпюры K ( x , y ).

М Н /м 3

Шаг

стержней,

м

Жесткость

элемента ЕА, МН

21

5

0,25

13,6

41

11,3

0,375

45,7

71

8,9

0,25

24

22

4,4

0,625

29,9

42

11,7

0,75

97,8

72

9,9

0,75

80

23

3,85

0,75

31,2

43

11,9

0,775

99,8

73

11

0,9

106,9

24

3,5

0,75

28,4

44

12,1

0,8

104,3

74

11,6

0,8

100,7

25

3,29

0,75

26,6

45

12,1

0,8

104,9

75

12,9

0,6

775,7

26

3,16

0,775

26,4

46

12,2

0,8

105,6

76

12,2

0,4

521,4

27

3,08

0,8

26,6

47

12,2

0,8

105,8

77

12,2

0,6

78,8

28

3,03

0,8

26,2

48

12,3

0,8

106

78

12,3

0,8

105,9

29

3

0,8

25,9

49

12,3

0,8

106,2

79

12,3

0,9

119,8

30

2,99

0,8

25,8

50

12,3

0,8

106,3

80

12,4

0,8

107

31

2,98

0,8

25,7

51

12,3

0,8

106,4

81

12,4

0,7

93,7

32

2,97

0,8

25,7

52

12,4

0,8

106,6

82

12,4'

0,8

107,3

33

2,97

0,8

25,7

53

12,4

0,775

103,5

83

12,4

0,8

107,6

34

2,97

0,8

25,7

54

12,4

0,75

100,7

84

12,5

0,775

104,6

35

2,98

0,8

25,7

55

12,5

0,75

101,4

85

12,6

0,75

101,7

36

2,99

0,775

25

56

12,7

0,75

102,6

86

12,6

0,75

102,5

37

3

0,75

24,3

57

12,9

0,75

104,5

87

12,8

0,75

103,8

38

3,03

0,75

24,6

58

13,3

0,75

107,7

88

13,1

0,75

105,9

39

3,08

0,75

25

59

13,9

0,75

113

89

13,5

0,75

109,4

40

3,16

0,75

25,6

60

15

0,75

121,7

90

14,2

0,75

115,3

61

16,8

0,625

113,3

91

15,4

0,75

124,7

62

18,6

0,25

50,2

92

17,3

0,625

117,1

93

19,3

0,25

52,1

Определение жесткостных характеристик, моделирующих грунтовое основание, производится по формуле

где K - ордината переменного коэффициента жесткости основания в рассматриваемой точке определяемая по формулам ( 1), ( 2), ( 3) настоящего приложения для I, II, III стадий расчета соответственно; b - ширина фундаментной плиты в рассматриваемой зоне; t - шаг стержней, имитирующих грунтовое основание в рассматриваемой зоне; lh - высота стержня, принимается равной 1 м.

Ширина фундаментной плиты составляет 10,8 м. Результаты расчета приведены в табл. 9.

Еще документы скачать бесплатно

www.gosthelp.ru

Фундамент под металлообрабатывающий станок

В условиях статических и динамических нагрузок, которые воздействуют на основание, подготовка фундамента под станок является ответственной операцией, требующей четкого проектного расчета и добросовестного соблюдения технологии его изготовления.

Суммарная нагрузка (с учетом вибраций), передаваемая на площадь опорной подошвы, не может превышать несущую способность подстилающего грунта, поэтому в зависимости от характера работы оборудования для разных типов станков выбирают разные конструкции фундамента.

Требования к основанию

Фундамент для установки технологического оборудования, включая станки по механической обработке твердых материалов, несмотря на необходимость проведения индивидуального расчета в конкретных условиях эксплуатации, должен соответствовать СНиП 2.02.05-87.

Общие правила по устройству опор для машин, создающих динамические нагрузки, формулируются так:

  1. Массивность. Чем больший вес имеет основание, тем выше его способность сопротивляться вибрациям станка.
  2. Высокая прочность и жесткость. Устойчивость к постоянным и переменным нагрузкам прямо пропорционально влияет на срок эксплуатации оборудования на этом фундаменте. Жесткое крепление важно для высокоточных станков.
  3. Повышенная устойчивость к агрессивным воздействиям (ГСМ, охлаждающие эмульсии, растворители). Необходимо обеспечивать максимальную инертность хотя бы для верхнего слоя монолита.

Такие характеристики нужны фундаменту в комплексе с выдержкой минимально допустимых отклонений по его расчетным габаритам.

В зависимости от массы станка (до 10 т или более) и класса точности разрешается применять под них различные по конструкции основания (общие, одиночные, вибро-изолированные). Вертикальные разрезы таких опор показаны на чертеже:

Ставить 1 шлифовальный станок или группу можно на утолщенные ленты, специально заливаемые в полу цеха, как показано на этом фото:

При монтаже станков на 2 этаже и выше используют рамный или стенчатый тип бесподвального фундамента. У них нагрузка распределяется через каркас на перекрытия или несущие стены (опорные колонны). Вибрация, создаваемая станком, для такой опоры должна быть минимальная. Устанавливая фрезерный агрегат, можно применить демпферы, гасящие частотные колебания.

Уклон верхней плоскости крепления оборудования категорически не допускается.

В противном случае будет неравномерное распределение эксплуатационных нагрузок, что влияет на характеристики работающего станка, оказывает разрушающее воздействие на станину механизма и анкеры в основании.

Сделать для себя

Металлообрабатывающий станок в частной мастерской не является редкостью. Сделать прочный фундамент можно руководствуясь СНиП и техническим описанием для конкретного вида оборудования. В качестве памятки пригодятся такие рекомендации:

  • легкие модели станков ставят на железобетон марки М200, М300, тяжелые агрегаты — на М300, М400;
  • при расчете давления подошвы на грунт коэффициент условий работы (от 0,5 до 1) зависит от вида оборудования, коэффициент осадки грунта(0,7 – 1) от его влажности;
  • контакт материала фундамента с конструктивными несущими элементами здания нежелателен – надо оставлять зазор, устраивать гасящую подушку из щебня, дубового бруса;
  • анкера для крепления станка располагаются не ближе 0,2 м к краю основания;
  • в отапливаемых мастерских глубина заложения 0,5 – 0,7 м, в неотапливаемых помещениях глубина промерзания + 0,25 м (минимум);
  • трамбовка бетона при заливке проводится послойно, толщиной 0,15 м.

Планировать расположение габаритного механизма лучше до заливки пола на предполагаемом месте его установки, как показано на этом фото:

Пример самостоятельного изготовления фундамента под токарный станок ТВ-6 (пошаговые операции) показан на этом видео:

Как и все виды бетонных оснований, фундамент для оборудования нуждается в гидроизоляции, армировании и соблюдении сроков набора крепости монолитом (27 – 30 дней) до начала монтажа на него станка.

fundamentaya.ru


Смотрите также