Содержание, карта.

Как в старину делали фундамент


История дома из сруба - фундамент в старину - твойдомстройсервис.рф

История дома из сруба, способы изготовления дома из сруба, отбор древесины для изготовления дома, как изготавливали фундамент, исходя из этих полученных сведений,  всё больше застройщиков предпочитают дома бревенчатые,с рубленные  из бревна, тёсанного вручную. Именно срубленные, поскольку при их создании с успехом используют старинные способы рубки.

На Руси дерево в строительстве использовали с незапамятных времён. Жилые дома, бани и амбары, мосты и изгороди, ворота и колодца. Мы отечественная строительная фирма, из Вологодской области активно возрождаем  традиции деревянного зодчества.

В нашей компании есть свои профессионалы, посвятившие жизнь изучению способов деревянного строительства, секретов рубки, без которых сооружение качественного бревенчатого дома из сруба просто немыслимо. Восстановленные старинные  способы рубки, подсечки, протёски они с умением  применяют для рубки современных бревенчатых домов из сруба.

 История рубленного дома

Для начала заглянем в историю.

  • Небольшой жилой дом на Руси назывался избой (от др.- слав. истьба, истопка – «отапливаемый жилой сруб»).
  • Большой дом именовался хоромами. Как избу, так и хоромы составляли из нескольких срубов-клетей – по их количеству дома давали название – «двойня», «тройня», «четверня» и т.д. При этом каждая из клетей-срубов могла иметь определённое количество разгораживающих её внутренних стен (пятистенок, крестовый).

  • В средней полосе наиболее часто рубили избу из трёх клетей (трёхчастная), отапливаемую жилую и холодную (летнюю) горницу которой разделяли сенями. Как правило, именно сени служили входом в дом из бревна, к которому вёл всход -крыльцо. Чтобы превратиться в хоромы, такая избы должна вырасти вверх.
  • Над сенями надстраивали вышку-терем (теремом называли отдельно стоящую высокую жилую постройку, соединявшуюся с основным домом переходом). Над центральной границей делали помещение для застолий-пиров – повалушу, которая иногда приобретала вид башни и становилась композиционным центром постройки.
  • На чердаке летней части избы с главного фасада устраивали не отапливаемую женскую комнатку с низким потолком (при входе в неё мужчины обычно склоняли голову) – светёлку.  Бревенчатые стены сруба дома служили дополнительными опорами крыши.

Проект будущего сруба дома нужен не только строителям, сколько вам: необходимо тщательно продумать планировку рубленого дома, Ведь бревенчатое здания – не кирпичное, где можно относительно легко заложить дверной проём в одной перегородке и прорубить в другой.

  Комфорт- уют рубленного дома из бревна    

Дом из сруба,  он прекрасен  внешним видом и дополнительный уют приносит янтарно-золотистая цветовая гамма – природный цвет нашей северной древесины. Достаточная  прочность, хорошие теплотехнические качества, а так же богатые художественные выразительные возможности дерева, и станет понятно, почему спрос на деревянные дома  с дерева в последние годы растёт. Из широко используемых для строительства из хвойных пород дерева (сосны, ели), наибольшей популярностью пользуется сосна, ель что обусловлено практичностью и свойствами древесины.

Дом из сруба, брёвна для него  отбирают поштучно и самым тщательным образом – при этом предпочтения отдают брёвнам ровным и без дефектов. Для удаления коры применяют обработку ручным скобелем, что помогает максимально сохранить верхний защитный слой древесины. А это, в свою очередь, является гарантией долговечности (обработанное оцилиндрованное бревно защитный слой, как правило, теряет).

Только ручная рубка сруба дома  позволяет использовать брёвна большим  диаметром и длиной до 11 метров. Укладку венцов ведут  по правилу «комель к вершине», Понятно, что такие брёвна  ни кто искусственным способом не сушит, - они имеют естественную влажность (25-40%).

Затем срубленный дом  должен отстоятся. Кстати, «ручная» рубка называется ещё и потому, что профили угловых  соединений(чаша, лапа) и горизонтальных стыков, выполняемые на каждом венце, отличаются индивидуальной формой (каждое бревно имеет собственный, неповторимый профиль),  по этому механизация процесса их «создания» практически невозможна даже в наше время.

История фундамента сруба дома

  • В старину нижний окладной венец сруба часто клали прямо на землю, а чтобы он меньше гнил, бревна подбирали более толстые и смолистые (в некоторых случаях их дополнительно обжигали на медленном огне). При этом вокруг  стен для тепла устраивали земляную насыпь – завалинку.

  • В Сибири для нижних венцов обязательно использовали лиственницу, древесина которой не боится влаги, а, следовательно, гнили. Ещё один способ борьбы с грунтовой влагой – подкладывание под углы и середину окладных венцов крупных плоских валунов (между ними и бревном раньше помещали– бересту), обрезки толстых брёвен – «стульев» - или так называемых лап – стоящих вниз корнями выкорчеванных пней. У современных застройщиков значительно шире возможности выбора конструкции фундамента и материалов.
  • Так, для Севера и Центра России характерна высокая изба с подклетям.  Подклеит имел отдельный выход на улицу и использовался как кладовая,   мастерская, помещение для скота и птицы . Конечно, основанное на значение подклети иное - предохранить расположенную над ним дом со сруба , от идущего от земли холода, защитить от снеговых заносов зимой и паводков весной.
 Повал 

В русском деревянном зодчестве понятие «повал» означает расширение верхней части сруба по плавной кривой путем постепенного выпуска наружу венцов, образующих подобие бревенчатого карниза.

Имеющие такую опору свесы крыши могут быть значительно увеличены, а значит, лучше защитят бревенчатые стены сруба дома от дождевой воды. Это так сказать, практическая сторона. Если говорить о стороне эстетической, этот не хитрый приём позволяет придать дому некоторую величественность.

Гульбище

В старину жилые рубленые дома  ручной рубки имели ещё и такой архитектурный элемент, как  гульбище – галерею, опоясывающую стоящий на высоком подклети дом на уровне первого, а иногда и второго этажа. Опирается конструкция на выпущенные концы балок перекрытия, усиленные упирающимися в стену деревянными подкосами, либо на выпуске брёвен повала.

Настил дощатый, боковое  ограждения – перила, лежащие на балясинах (плоских или объемных). Над гульбищем обычно делают на вес. Если эта конструкция располагается на уровне второго этажа, навесом служит свес ската крыши, который поддерживает резные стойки.

У  гульбища кроме основного назначения («гулять») есть и дополнительное – с него удобно закрывать оконные ставни. В современной  деревянной  архитектуре- гульбище опоясывающие дом ручной рубки, со всех сторон встречается редко, а вот балконы есть практически в каждом срубе.

5 Комментариев

Как делали фундамент в старину

В старину дети ходили в школу без мобильников, а строители обходились без рубероида. Строителей пирамид Древнего Египта о гидроизоляции сооружений не очень беспокоились (исключения — подземные зернохранилища), хоть и строили на совесть.

Когда же народы холодной и влажной Центральной и Северной Европы переняли римские инженерные приемы в строительстве, им пришлось серьезно задуматься о защите подземных частей сооружений от влаги.

В какой-нибудь Голландии, которая — сплошь болото, без этого никак. Строительная практика показала, что лучшим (и единственным при том уровне развития технологий) видом изоляции является глина.

По счастью, подходящая глина для гидроизоляции зачастую встречается в низменных районах с влажными грунтами.

-советы по устройству глиняного замка ↑

До середины XIX века при строительстве подвалов на увлажненных грунтах использовалась традиционная и надежная технология: фундамент, сложенный из кирпича либо бута на известковом растворе, обмазывался слоем глины толщиной 8-10 см, которая затем закрывалась натуральной рогожей. Снизу в качестве дренажа подсыпался слой кирпичного щебня, при значительном увлажнении грунта укладывались дренажные трубы. Так построено множество европейских городов в регионах с влажной почвой. В России яркие примеры — Санкт-Петербург и Калининград (Кенигсберг), многие подвалы в них располагаются ниже уровня грунтовых вод и при этом остаются сухими. Системы подземного дренажа и глиняной изоляции найдены археологами при раскопках сооружений времен XIV века в Новгороде. Течи в подвалах старинных зданий возникают в тех случаях, когда при прокладке коммуникаций нынешние строители нарушают старинную глиняную гидроизоляцию и пытаются восстановить ее современными, привычными им, средствами.

Очень качественная жирная глина идеально подходит для гидроизоляции

Глинобитные полы, которые еще встречаются в старых деревенских домах, остаются совершенно сухими даже во влажном климате, пока на них не прольют воду сверху.

В богатых старинных домах и церквях полы делали по кирпичной выстилке, устраивая поверх глиняный слой толщиной 10-15 см. Глину тщательно трамбовали цепями (молотили), поливая бычьей кровью, подсмольной водой либо навозной жижей.

Изготовленный таким образом пол облицовывали камнем или керамическими плитками, используя в качестве клея опять же глиняные растворы.

Глина пригодна не только для изготовления посуды, она — ценнейший строительный материал

В XIX веке в строительстве стали внедряться в качестве гидроизоляционных материалов битумы и гудроны, постепенно вытесняя традиционные методы.

В современном строительстве применяются главным образом высокоиндустриальные современные материалы гидроизоляционные материалы на основе нефтяного битума, цемента и полимеров.

Однако, глину в этом качестве списывать рано.

Гидроизоляция сооружений глиняным замком применяется довольно широко и по сей день, причем не только в российской глубинке, но и в богатых и продвинутых со строительной точки зрения странах.

Подземные сооружения и фундаменты домов старого Санкт-Петербурга, построенного практически на болоте, стоят на деревянных сваях и имеют гидроизоляцию с применением глиняного замка и асфальтово-угольных обмазок

Сфера применения глиняной изоляции в наше время ↑

Как и в прежние времена, глина используется для защиты от влаги подвальных этажей и фундаментов зданий. Идеальный вариант — совместное применение современных и традиционных методов.

Поверхностную изоляцию можно сделать битумными материалами (рулонными или обмазочными) либо полимер-цементным составом. Снаружи соорудить глиняный замок.

Такое решение во много раз повысит надежность гидроизоляции.

Очень часто строители делают ошибки при строительстве зданий в глинистых грунтах.

Копают котлован, сооружают подвальный этаж, а обратную засыпку производят, как принято, песчано-гравийной смесью, чтобы нейтрализовать пучинистое воздействие глины на фундамент.

Строители хотят как лучше, а получается «как всегда». Глинистый грунт воду задерживает, а песчаный, как губка, отлично впитывает. После дождя вся вода уходит в песок, там и остается.

Засыпка вокруг здания значительную часть года насыщена водой, причем вне зависимости от уровня грунтовых вод.

Один из вариантов, позволяющих построить сухой подвал. Если стены подвала бетонные, кирпичную облицовку можно заменить на обмазочную или оклеечную изоляцию

Если в поверхностной изоляции цоколя есть хоть малейшая дырочка, вода обязательно найдет дорогу внутрь дома. Устраняется эта беда устройством глиняного замка либо дорогостоящим подземным дренажом.

При строительстве на глинистых грунтах лучше вообще не использовать песчаные подсыпки. Под подушкой фундамента лучше разместить слой щебня, вынутую из котлована глину засыпать обратно и уплотнить.

Глина является самым популярным гидроизоляционным материалом при строительстве прудов и водоемов.

Прекрасно удерживает воду без каких-либо дополнительных мероприятий.

Впрочем, использование пленки только улучшит свойства пруда, предотвратив размывание глиняного слоя.

Свойство глины задерживать воду используют при строительстве прудов

Промышленность выпускает высокотехнологичные гидроизоляционные материалы, содержащие глиняные компоненты.

Довольно известна на Западе продукция американской компании «Akzo Nobel Geosynthetics» — трехслойные гидроизоляционные маты «NaBento», изготовленные на основе бентонитовой глины в оболочке из геотекстиля. Маты расширяются после засыпки пазух котлована, плотно «запаковывая» возможные щели, их применяют для изоляции ответственных подземных сооружений в сложных условиях. Маты на основе глины производит ряд предприятий США, Канады, европейских стран и Китая.

Устройство глиняного замка при устройстве деревенского колодца для питьевой воды является обязательным. В противном случае внутрь вдоль стенок будут просачиваться грязные поверхностные воды.

Глиняный замок и отмостка колодца должны иметь наклон наружу

Свойства глиняного замка ↑

  • Глина не имеет срока хранения, не портится. Глиняная изоляция не выходит из строя, не нуждается в ремонте.
  • Глина — мелкодисперсный и пластичный минерал. В глиняном замке не могут возникнуть трещины, его не размоет грунтовыми водами. От ливневых стоков с крыши глиняный замок следует защитить.
  • Глина не пропускает воду, но не влагу. Фундамент без поверхностной изоляции не намокнет, но немного увлажнится. Лучшее решение — совместное применение поверхностной изоляции и глиняного замка.
  • Глина имеет свойство значительно расширяться при замерзании. Если глиняный замок выполнен в песчаном либо супесчаном грунте, это не имеет значения. Если же грунт на стройплощадке глинистый, фундаменты сооружения должны иметь гладкую поверхность, наружный профиль фундамента не должен расширяться кверху, чтобы его не выдавили силы морозного пучения.
  • Очень часто глина валяется под ногами и ничего не стоит. Приятный бонус.

Лучший способ изготовления замка — послойная его трамбовка в опалубке, которая не обязательно должна быть ровной

Как правильно подобрать глину ↑

Чем жирнее глина, тем лучше. Жирной считается глина, содержащая от 5 до 15% песка. Цвет не имеет значения. На худой конец можно использовать суглинок, но его эффективность немного ниже. Качество глины определяется мануально: взять в ладошку и помять.

Для изоляции подойдет любая разновидность глины с низким содержанием песка

Как сделать глиняный замок: осваиваем технологию ↑

Для устройства замка применяют глину естественной влажности. Если она вынимается из земли для хранения, ее следует замочить, полив водой и накрыв сверху.

Глина готова к применению, когда из нее можно что-нибудь слепить: не рассыпается и не проскальзывает между пальцев, когда ее мнут.

Не лишним будет добавить в состав глины 10-20% извести, особенно при повышенном содержании в ней песка.

Если глина держит форму: не рассыпается и не растекается, она готова к применению

Наилучший результат дает тщательная трамбовка глины в опалубке. Можно установить деревянные щиты, обеспечив толщину замка в 15-20 см.

Если котлован неширок, а материал имеется в достаточном количестве, опалубкой могут служить сами стенки котлована. Трамбуют глину слоями высотой по 20-30 см.

Размещение снаружи замка геотекстильного полотна предотвратит его постепенное размывание грунтовыми водами.

Пока нет отмостки, по периметру дома также стоит проложить полосу геотекстиля, засыпку сделать с уклоном от здания. Отмостку можно сделать из смеси щебня и мятой глины, замостить сверху.

Если котлован неширок, опалубку можно не выставлять

Глиняный замок колодца делают подобным отмостке. Он должен быть широким, не менее метра, и не обязательно глубоким, от полуметра. Лучше, конечно, пошире и поглубже.

Если из колодца в дом идет водопроводная труба, она также должна быть изолирована замком вне зависимости от глубины ее прокладки.

Глину можно сверху застелить геотекстилем и уложить на нее тротуарную плитку либо булыжник.

Поверхность должна стать похожей по твердости на пластилин, тогда можно наносить следующий слой. Во время сушки, в том числе по окончанию работ, нельзя давать глине пересохнуть во избежание появления трещин. Ее нужно укрывать пленкой, можно сеном.

Водоем получится идеальным, если поверх глины расстелить пленку для прудов.

Глиняную отмостку следует защитить сверху геотекстилем или замостить

Итак, глина не только традиционный, но и перспективный материал для гидроизоляции зданий от грунтовой влаги.

Она в буквальном смысле валяется под ногами, работы не требуют наличия квалификации и сложного инструмента у исполнителя, хотя довольно трудоемки.

Европейские и американские технологи продолжают успешную разработку новейших изоляционных материалов на основе глин, появление их в России следует ожидать в скором времени.

Источник: http://GidroGuide.ru/material/glina-dlya-gidroizolyacii.html

История дома из сруба — фундамент в старину — твойдомстройсервис.рф

История дома из сруба, способы изготовления дома из сруба, отбор древесины для изготовления дома, как изготавливали фундамент, исходя из этих полученных сведений,  всё больше застройщиков предпочитают дома бревенчатые,с рубленные  из бревна, тёсанного вручную. Именно срубленные, поскольку при их создании с успехом используют старинные способы рубки.

На Руси дерево в строительстве использовали с незапамятных времён. Жилые дома, бани и амбары, мосты и изгороди, ворота и колодца. Мы отечественная строительная фирма, из Вологодской области активно возрождаем  традиции деревянного зодчества.

В нашей компании есть свои профессионалы, посвятившие жизнь изучению способов деревянного строительства, секретов рубки, без которых сооружение качественного бревенчатого дома из сруба просто немыслимо. Восстановленные старинные  способы рубки, подсечки, протёски они с умением  применяют для рубки современных бревенчатых домов из сруба.

 История рубленного дома

Для начала заглянем в историю.

  • Небольшой жилой дом на Руси назывался избой (от др.- слав. истьба, истопка – «отапливаемый жилой сруб»).
  • Большой дом именовался хоромами. Как избу, так и хоромы составляли из нескольких срубов-клетей – по их количеству дома давали название – «двойня», «тройня», «четверня» и т.д. При этом каждая из клетей-срубов могла иметь определённое количество разгораживающих её внутренних стен (пятистенок, крестовый).
  • В средней полосе наиболее часто рубили избу из трёх клетей (трёхчастная), отапливаемую жилую и холодную (летнюю) горницу которой разделяли сенями. Как правило, именно сени служили входом в дом из бревна, к которому вёл всход -крыльцо. Чтобы превратиться в хоромы, такая избы должна вырасти вверх.
  • Над сенями надстраивали вышку-терем (теремом называли отдельно стоящую высокую жилую постройку, соединявшуюся с основным домом переходом). Над центральной границей делали помещение для застолий-пиров – повалушу, которая иногда приобретала вид башни и становилась композиционным центром постройки.
  • На чердаке летней части избы с главного фасада устраивали не отапливаемую женскую комнатку с низким потолком (при входе в неё мужчины обычно склоняли голову) – светёлку.  Бревенчатые стены сруба дома служили дополнительными опорами крыши.

Проект будущего сруба дома нужен не только строителям, сколько вам: необходимо тщательно продумать планировку рубленого дома, Ведь бревенчатое здания – не кирпичное, где можно относительно легко заложить дверной проём в одной перегородке и прорубить в другой.

  Комфорт- уют рубленного дома из бревна    

Дом из сруба,  он прекрасен  внешним видом и дополнительный уют приносит янтарно-золотистая цветовая гамма – природный цвет нашей северной древесины.

Достаточная  прочность, хорошие теплотехнические качества, а так же богатые художественные выразительные возможности дерева, и станет понятно, почему спрос на деревянные дома  с дерева в последние годы растёт. Из широко используемых для строительства из хвойных пород дерева (сосны, ели), наибольшей популярностью пользуется сосна, ель что обусловлено практичностью и свойствами древесины.

Дом из сруба, брёвна для него  отбирают поштучно и самым тщательным образом – при этом предпочтения отдают брёвнам ровным и без дефектов.

Для удаления коры применяют обработку ручным скобелем, что помогает максимально сохранить верхний защитный слой древесины.

А это, в свою очередь, является гарантией долговечности (обработанное оцилиндрованное бревно защитный слой, как правило, теряет).

Только ручная рубка сруба дома  позволяет использовать брёвна большим  диаметром и длиной до 11 метров.

Укладку венцов ведут  по правилу «комель к вершине», Понятно, что такие брёвна  ни кто искусственным способом не сушит, — они имеют естественную влажность (25-40%).

Затем срубленный дом  должен отстоятся.

Кстати, «ручная» рубка называется ещё и потому, что профили угловых  соединений(чаша, лапа) и горизонтальных стыков, выполняемые на каждом венце, отличаются индивидуальной формой (каждое бревно имеет собственный, неповторимый профиль),  по этому механизация процесса их «создания» практически невозможна даже в наше время.

История фундамента сруба дома

  • В старину нижний окладной венец сруба часто клали прямо на землю, а чтобы он меньше гнил, бревна подбирали более толстые и смолистые (в некоторых случаях их дополнительно обжигали на медленном огне). При этом вокруг  стен для тепла устраивали земляную насыпь – завалинку.
  • В Сибири для нижних венцов обязательно использовали лиственницу, древесина которой не боится влаги, а, следовательно, гнили. Ещё один способ борьбы с грунтовой влагой – подкладывание под углы и середину окладных венцов крупных плоских валунов (между ними и бревном раньше помещали– бересту), обрезки толстых брёвен – «стульев» — или так называемых лап – стоящих вниз корнями выкорчеванных пней. У современных застройщиков значительно шире возможности выбора конструкции фундамента и материалов.
  • Так, для Севера и Центра России характерна высокая изба с подклетям.  Подклеит имел отдельный выход на улицу и использовался как кладовая,   мастерская, помещение для скота и птицы . Конечно, основанное на значение подклети иное — предохранить расположенную над ним дом со сруба , от идущего от земли холода, защитить от снеговых заносов зимой и паводков весной.

 Повал 

В русском деревянном зодчестве понятие «повал» означает расширение верхней части сруба по плавной кривой путем постепенного выпуска наружу венцов, образующих подобие бревенчатого карниза.

Имеющие такую опору свесы крыши могут быть значительно увеличены, а значит, лучше защитят бревенчатые стены сруба дома от дождевой воды.

Это так сказать, практическая сторона.

Если говорить о стороне эстетической, этот не хитрый приём позволяет придать дому некоторую величественность.

Гульбище

В старину жилые рубленые дома  ручной рубки имели ещё и такой архитектурный элемент, как  гульбище – галерею, опоясывающую стоящий на высоком подклети дом на уровне первого, а иногда и второго этажа. Опирается конструкция на выпущенные концы балок перекрытия, усиленные упирающимися в стену деревянными подкосами, либо на выпуске брёвен повала.

Настил дощатый, боковое  ограждения – перила, лежащие на балясинах (плоских или объемных). Над гульбищем обычно делают на вес. Если эта конструкция располагается на уровне второго этажа, навесом служит свес ската крыши, который поддерживает резные стойки.

У  гульбища кроме основного назначения («гулять») есть и дополнительное – с него удобно закрывать оконные ставни.

5 Комментариев

Источник: https://xn--b1aafeqcbxpcbxdjdebh.xn--p1ai/istoriia-doma-iz-sryba-fyndament-v-stariny

Бутовый каменный фундамент для дома

Бутовый фундамент – это основание под строение, практически на 90 % выполненное из бута.

Основные преимущества фундамента из бутового камня заключаются в экономии строительного материала, эстетической привлекательности и, самое главное, — надежности.

Каменные фундаменты для дома возводятся несколько столетий, и столь многолетняя практика использования бута говорит в пользу этого материала сама за себя.

Любая постройка начинается с закладки прочного фундамента, экономить на котором никто не советует.

По используемым материалам фундаменты делятся на шесть типов: песчаный, кирпичный, бутовый, бетонный, блочный, железобетонный.

В старину дома возводились на каменных фундаментах, в которые старались укладывать большие камни блокоподобных или блоковых форм.

Камни этих фундаментов почти всегда превышали размеры бутового камня, поэтому их правильно называть просто каменными фундаментами. Такие фундаменты являются самыми древними и сейчас их делают редко.

Каменные фундаменты — 7 тип существующих фундаментов, который по праву должен числиться под номером 1. Самыми же надежными домами являются те, которые возведены на вечных фундаментах — на скальных породах, где фундаментом является сама скала. Но это уже не фундамент как таковой, а природное основание.

Разница между каменной и бутовой кладке фундамента состоит в размерах применяемых для них камней. Как известно, бутовый камень по своим размерам доходит до 50 см. Камни размерами более полуметра являются глыбами, блоками (большими), валунами и т.д.

— в зависимости от своих форм и масс. Поэтому при кладке бутовых фундаментов, если в наличии имеются камни разных размеров, то почему бы не использовать их все, не особенно утруждая себя тем, как правильно будет характеризоваться такой фундамент.

Как сделать ленточный каменный фундамент

По своей конструкции фундаменты подразделяются на столбчатые, ленточные и плитные.

Каменные фундаменты могут быть либо ленточными (непрерывными), либо плитными — к примеру, состоящими из нескольких вкопанных блоков под углами домика.

Ленточные каменные фундаменты закладываются под дома с тяжелыми плитами перекрытий и тяжелыми стенами. Ленточная конструкция фундамента берет на себя максимальную нагрузку от здания.

Фундаменты из камня требуют к себе, с одной стороны, серьезной ответственности, с другой — не самой сложной подготовки и опыта исполнителя.

Фундаменты из гранитного бута, булыг, валунов, глыб или блоков являются одними из самых надежных, особенно, если они делаются в пучинистых грунтах (глинистых, суглинистых, супесных, а также пылеватых песках). Такие грунты коварны тем, что при жаркой погоде они сжимаются, а при промерзании, особенно, если после дождей — вспучиваются, резко меняя свои объемы. При этом силы, которые действуют на фундамент, достигают 6-10 тонн на один квадратный метр фундамента.

Перед тем как сделать каменный фундамент, на выбранном участке выравнивается поверхность, затем делается разметка контуров будущего фундамента. Контуры фундамента обозначают прочным шпагатом, натянутым над землей и привязанным к вбитым колышкам.

Читайте также  Облицовка свайного фундамента

Иногда эту операцию заменяют устройством обноски — ряда столбиков с прибитыми поверху досками.

Обноска должна быть немного выше будущего предполагаемого цоколя и в метре-полутора от внешних краев траншей, вырываемых под фундамент.

Обноска может быть как непрерывной, так и частичной, вокруг углов будущих стен.

В этом случае обноска удобно заменяет колышки, которые нужно вбивать в грунт для натягивания шпагатов (или лески), так как теперь шпагаты можно будет удобно фиксировать на досках обноски и проверять правильность направлений и размеров контуров фундамента и его углов.

Точно отметить углы фундамента (соответственно стен здания) под 90° поможет знание так называемого «египетского треугольника», в котором соотношения сторон равны 3:4:5 метрам. Такой треугольник делается с помощью натянутых шпагатов соответствующих метражей или сбивается из реек, досок.

Одинаковость вертикальных отметок по верхам углов будущего фундамента (нулевой цикл) проверяется с помощью водяного уровня.

После разбивки фундамента и тщательной проверки размеров, точности углов фундамента и ширины его стен (которые могут быть шире стен дома на 20-30 см) приступают к выемке грунта. Немного прокопав траншеи фундамента, можно снять мешающий работе шпагат разметки.

Фундаменты под дома закладываются ниже уровня промерзания грунта. Глубина такого фундамента зависит от этажности будущего дома и характера грунта.

После выемки грунта дно траншей нужно засыпать песком. Толщина слоя песка должна быть не менее 10 см.

Затем, пользуясь плодами современной цивилизации, дно и стены траншей можно простелить пленкой ПВХ или простой полиэтиленовой пленкой так, чтобы края кусков пленки заходили друг на друга внахлест на 30 см.

При этом пленку можно укрепить на бровке траншей камнями или кирпичами (придавить).

Такая операция позволит продлить срок целостности фундамента фактически на столетия, так как целлофан избавит фундамент от более сильного сцепления с пучинистым грунтом и грунтовыми водами, а также позволит сохранить в основании все укрепляющие фундамент компоненты. Чтобы пленка, уложенная в траншеи, не топорщилась, ее можно сразу придавить большими камнями враспор.

Если решено делать фундамент без пленки, то на слой песка, который должен закрывать дно траншеи (подушку), следует насыпать пятнадцатисантиметровый слой гравия (дренирующий слой).

Затем в работу идет обмытый камень.

При укладке первых камней сперва нужно нанести на дно траншеи (поверх гравия или пленки) слой раствора в 5-8 см.

Первые камни нужно начинать укладывать с углов, они должны быть побольше размерами и желательно блокоподобных форм.

Камень кладется впритык (враспор) к стене траншеи. Уложив краеугольные камни, можно производить укладку первых больших камней вдоль всей траншеи, располагая их враспор — впритык то к одной стенке траншеи, то к другой — противоположной.

Пустоты между камнями нужно закладывать меньшими камнями, стараясь подгонять их впритык друг к другу. Швы между камнями заполняются раствором марки 100-150.

Так укладывается первый ряд камней будущего фундамента, который должен иметь приблизительно одну высоту. Камни, равные по своей длине размеру ширины траншеи, укладываются тычком — поперек траншеи на всю свою длину.

Если камней с размерами ширины траншеи большое множество, то первый ряд фундамента (его подошва) укладывается тычком.

Устройство бутового фундамента своими руками (с фото и видео)

Для устройства бутового фундамента используются камни с несущей способностью не ниже 100 кг/см2.

Укладка бутового и другого камня — процесс осмысленный, поэтому делая одно (например, фундамент), следует заранее подумать о других работах, которые потребуют более ровный или более красивый камень.

Такой камень следует сразу отбирать в отдельную кучу. К таким относятся все камни, имеющие ровные стороны, более яркие расцветки или прожилки в расцветках, или кварцевые вкрапления, а также камни с ровными углами; камни, напоминающие многоугольники.

Делая фундамент из бута своими руками, большие камни, нужные для первого ряда каменной кладки фундамента, можно сбрасывать в траншею там, где траншея еще не застелена пленкой, а затем кантовать их к месту укладки; либо опускать их на руках.

Ознакомьтесь с видео устройства бутового фундамента, чтобы лучше понять технологию процесса:

Фото бутового фундамента представлены ниже:

Арматура для фундамента с бутовым камнем

После укладки первого ряда камней начинается установка арматурного каркаса, аналогичного каркасу в бетонных фундаментах: арматура вяжется в два слоя на протяжении всего фундамента, внахлест до 50 см.

На углах желательно вязать согнутую Г-образно арматуру. Диаметр арматуры нужно выбирать в зависимости от высоты будущей постройки. Для одно-двухэтажного дома достаточно диаметра 10 мм.

Арматура вяжется на вертикально устанавливаемые пруты. Расстояние вертикальных арматурин (стоек) друг от друга не должно превышать двух метров.

Если арматура будет мешать стоять камнекладчику в траншее, то ее нужно будет вязать поэтапно: сперва уложив камнями траншею до середины, затем нужно будет привязать новые две арматурины на все стойки и продолжить укладку камня почти до верха траншеи. Затем арматура вяжется последний раз — верхние две арматурины на все стойки. Таким образом, в целом получается, как минимум, три горизонтальных ряда по две арматурины в каждом. При виде сверху каждые две арматурины бутового фундамента любого ряда образуют в целом два слоя — передний и задний (или фронтальный и тыльный).

Все укладываемые камни должны осаживаться кувалдочкой до полного утопления их в растворе и упирания в нижележащие камни.

При этом не следует забывать о правилах перевязки камней.

То есть, по возможности все вертикальные швы ниже уложенных камней должны перекрываться вышележащими камнями.

Как сделать бутовый фундамент (фундамент из бута) своими руками

При укладке бутового фундамента своими руками следует заранее подумать обо всех коммуникациях современного дома: водопроводные и канализационные трубы, заземление, провода сигнализации и домофона и т.д.

Под все эти вещи необходимо сразу оставлять отверстия — закладывать трубы или деревянные кругляки, которые легко сверлятся; либо наполненные водой пластиковые баклажки, также легко удаляющиеся впоследствии.

Из последних, после затвердения фундамента, воду нужно слить. Армирование каменного фундамента придает ему большую прочность и надежность. Арматурный каркас может быть прокрашен грунтовочной масляной краской.

Вяжется арматура миллиметровой вязальной (упаковочной) проволокой с помощью крючков-воротков.

Уже имея представление, как сделать бутовый фундамент, последующие ряды камней укладываются аналогичным способом, идентичным с возведением стен из камней.

Если цоколь над фундаментом с бутовым камнем планируется делать из блокового камня или кирпича, то высота всего фундамента должна быть одинаковой — в горизонте, который называется «нулевым циклом».

Затем на фундамент кладется гидроизоляционный слой в виде рубероида. Второй гидроизоляционный слой кладется на возведенный цоколь.

Полиэтиленовую пленку с бровки траншеи нужно завести на 5 см под рубероид первого гидроизоляционного слоя (обрезав лишнее).

Бутовой фундамент без армирования

Кладку фундамента из бутового камня можно делать и без армирования: в таком случае фундамент будет менее надежен и неустойчив к сейсмическим воздействиям, но все же вполне пригодным для возведения на нем одноэтажного дома в сейсмоопасной зоне. В противном случае ненадежный фундамент ведет к образованию трещин в стенах дома и последующему его разрушению.

На фундаменте экономить нельзя! Минимальная толщина каменного фундамента должна быть 50 см. Готовому фундаменту нужно дать время для усадки и набора прочности. Для этого фундамент оставляют на зиму, а последующие работы начинают весной.

Источник: https://www.stroy-dom.net/?p=3367

История развития фундаментов — от Египта до наших дней

Первые фундаменты появились в те времена, когда человек научился возводить достаточно сложные жилища, по сравнению с примитивными укрытиями. Развитие фундаментов происходило постепенно в зависимости от технологического прогресса, накопленного опыта и новых знаний.

Понадобился не один век для того, чтобы человечество научилось строить современные опоры для зданий.

Зарождение и развитие фундаментов

Изначально опора для жилого дома или другой постройки была довольно примитивной и небольшой.

Древние люди искали большие камни или скальные основания и уже на них после различного рода модификаций располагали свои постройки.

Позже в качестве опоры дома стала использоваться древесина, что послужило зарождению свай.

Толчком для развития строительства подобных опор было полученное знание людей, что при наличии крепкого основания постройка эксплуатируется дольше и лучше противостоит влиянию природы и времени.

Элементы фундамента древней пирамидыПо мере развития общества стали сооружаться культовые постройки, споры о которых не утихают до сих пор.

История строительства египетских пирамид является предметом ожесточённых споров и много исследователей критикуют официальные версии возведения.

Читайте также  Как укрыть фундамент на зиму

Однако неоспоримым фактом в строительстве пирамиды Хеопса является наличие скального основания в фундаменте постройки.

На данном фундаменте расположилась постройка весом более 7 миллионов тонн, которая стоит и сейчас спустя несколько тысячелетий. Наблюдается логика строительства чуждая современной. Древние строители предпочли разровнять природную скалу, а не выбрали другое место, или не расчистили имеющийся участок. Так бы сделали современные строители, так делали вавилоняне и римляне.

Фундаментом для зданий служила подушка из обожжённых кирпичей. В качестве связующих использовались материалы на основе битума.

Похожая древняя технология строительства наблюдалась в древних Китае и Греции, однако, вместо кирпичей применялись обтёсанные камни.

В начале нашей эры в Юкатане индейцы майя использовали другой тип фундамента. Основанием постройки служили монолитные плиты или кладка и более мелких камней.

Использование монолитного фундамента ограничено из-за большой массы плит, поэтому изначально укладывались большие камни размерами около 500 мм, с последующей укладкой более мелких камней на известковом растворе.

Выполнялась имитация монолита. Такой фундамент являлся основой для постройки и полом одновременно.

Древние фундаменты Рима

Фундамент древнего РимаРимские строители обладали большими знаниями, так как они строили все города, все постройки по имперскому шаблону.

Независимо от местности, все города должны были быть одинаковыми.

Такой подход стал скачком в развитии оснований для построек, так как необходимо было приспосабливать каждую основу под различные грунты, особенности местности и климата.

В мягкой почве использовались сваи из дерева. При наличии более твёрдой почвы применялись ростверки из дерева прямо на самой поверхности.

Изредка строились каменные фундаменты из блоков. Основания храмов, дворцов и других значимых построек были схожи с каменными стенами высокого качества.

Невозможно недооценить вклад римлян в развитие фундаментов.

Венцом развития данного направления в строительном деле стала работа Витрувия, которая называется «Десять книг об архитектуре».

Витрувий являлся высококвалифицированным архитектором и военным инженером времен Юлия Цезаря.

Ценность его работы состоит в том, что эти книги являются значимым историческим источником.

Но для строителей более интересны подробные инструкции по строительству времён римлян. Витрувий привёл основные аспекты строительства оснований того времени:

  • выполняется копка канав на глубину, соответствующую объёму здания;
  • на дне канавы производится кладка блоков на растворе;
  • при наличии мягкой почвы производилась копка траншей с тщательными измерениями и выемкой грунта;
  • в траншеи забивались обожжённые сваи из ольхи и маслины;
  • промежутки между сваями засыпались углём;
  • при необходимости использовались подушки под фундамент из мелкого камня.

Строительство фундаментов в средние века

Иллюстрация книги Витрувия

На Руси исторические фундаменты, как и подавляющая часть построек, были сооружены из дерева.

После крещения началось строительство каменных храмов, для чего были приглашены лучшие зодчие из Византии для возведения оснований первых зданий и обучению местных жителей этому ремеслу.

Технология строительства была схожа с римской технологией, описанной Витрувием, примерно за 1000 лет. Исключением являлось то, что вместо блоков иногда использовался более мелкий кирпич.

Римские правила строительства фундаментов господствовали и в остальной Европе ещё долгое время. Местность разравнивалась, копались траншеи, закладывались блоки на растворе.

При появлении готических построек фундаменты выполнялись по частям под отдельную часть постройки, затем объединялись. Использовались подушки из камня, в мягких почвах — из хвороста.

Определённых правил строительства на то время не существовало. Все решения принимались конструктивно.

Развитие фундаментов в современности

Современный столбчатый фундамент с ленточной обвязкой

Более грандиозные постройки стали толчком к развитию фундаментов, поскольку имеющиеся основания не выдерживали нагрузок. С начала 1770 года появилась необходимость в проектировании зданий и создании законов строительства.

В 1773 году Ш. Кулон выдвинул теорию о сопротивлении грунтов сдвигу.

Данная теория актуальна в современности и применяется в проектировании фундаментов. В 1801 Н. Фусс выдвинул теорию о пропорции в зависимости деформации грунта от приложенной нагрузки, что позволило более рационально проектировать фундаменты. Е.

Винклер в 1867 году развил эту идею и ввёл коэффициенты пропорциональности. Было сформировано понятие о том, что площадь основания должна быть пропорциональна нагрузке.

Впоследствии, на проектировочных документах было указано максимально допустимое давление от основания на грунт.

Смотрите современные виды фундаментов на видео:

1867 год подарил человечеству железобетон, который был запатентован Ж. Монье. Использование железобетона в строительстве активно развивалось в ХХ веке.

История показала, что большинство идей древности и средневековья используются и сейчас. С развитием технологического прогресса изобретаются новые, комбинированные и модифицированные виды фундаментов.

Источник: https://fundamentaya.ru/dop/info/istoricheskie_fundamenty.html

Древнерусский раствор оказался лучше современного цемента

Древнерусский строительный раствор оказался по нескольким параметрам лучше, чем современный цемент. Подробностями строительства крепостей на Руси в XVI-XVII веках руководитель исследования поделился с корреспондентом Infox.ru.

Российские историки уже давно занимаются изучением истории и техники древнерусского строительства. Как пояснил корреспонденту Infox.

ru кандидат исторических наук Константин Носов из Российской академии государственной службы при президенте РФ в Москве, «все каменные или кирпичные сооружения на Руси строились с использованием специального строительного раствора».

Изучение состава этого раствора помогает ученым не только понять методику строительства, но и точнее датировать архитектурный памятник, создать похожий раствор для проведения реставрационных работ, определить, где именно добывались составляющие раствора, и отнести архитектурный памятник к определенной строительной школе.

Впервые этим вопросом историки занялись еще в 1930 году, однако до сих пор про растворы известно немного.

По словам Носова, дело в том, что до настоящего времени ученые использовали каждый свой метод анализа, да и обработали небольшое количество образцов.

В основном исследователей интересовали домонгольские сооружения: ученые исследовали около 90 древнерусских памятников, из которых 70 датируются XI-XIII веками.

13 образцов на анализ

Команда российских ученых под руководством Носова решила провести комплексный анализ образцов раствора более позднего периода.

 Ученый лично взял 13 образцов строительных растворов русских крепостей XVI-XVII веков в Нижнем Новгороде, Коломне, Зарайске, Серпухове, Борисовом городке, Смоленске и Вязьме.

Для сравнения он также изучил образцы современного раствора в Смоленске и средневековых укреплений в Англии и в Уэльсе (замок в Чепстоу, городские стены в Конуи и в Кембере).

Рентгенофлуоресцентный анализМетод спектроскопического исследования вещества с помощью рентгеновского излучения для определения содержания элементов и элементарного состава образца вещества. Петрографический анализ — метод исследования вещества с помощью микроскопа для определения фазового состава, структуры и текстуры горной породы или технического камня.

Химический анализ рентгенофлуоресцентным методом провела Ирма Рощина из Института геохимии и аналитической химии им. В. И. Вернадского РАН. Петрографический анализ сделала сотрудник Государственного научно-исследовательского института реставрации Раиса Лобзова.

Что такое строительный раствор?

Строительный раствор состоит из двух компонентов: вяжущего вещества и заполнителя. Иногда к ним подмешивают и специальные добавки.

На Руси в качестве вяжущего элемента использовалась известь: известняк, мел и другие карбонатные породы обжигались в специальных печах.

К полученной смеси добавляли воду, в результате чего образовывалась гашеная известь, получалось этакое строительное «тесто». Однако такой материал быстро трескался.

Поэтому к извести добавляли заполнитель, например песок, значительно улучшавший качество строительного раствора.

Ученые определили прочность разных строительных растворов, процентное соотношение вяжущего элемента и заполнителя, их состав и дополнительные примеси (например обломки кирпича или кирпичная мука, шлак, раковины и т. д.).

Как и из чего строили в XVI веке?

ЦемянкаЗаполнитель для строительного раствора из керамической или кирпичной крошки. Использовался, например, при строительстве архитектурных памятников Киева, Чернигова, Переяславля.

В итоге ученые выяснили, что строительные смеси, связывающие камни крепостей XVI-XVII веков, значительно отличаются от более ранних образцов. В XI-XIII веках в основном использовали известково-цемяночные, а в XVI-XVII — известково-песчаные смеси. В некоторых образцах присутствует недожженная известь, которая повышает прочность раствора. Возможно, древние строители специально не очищали известь, выяснив экспериментальным путем, что так качество раствора только повышается. Исследователи также нашли следы повторного использования старой извести, которую смешивали с новой. Более того, они обнаружили, что некоторые качества древней извести (долговечность, воздухоустойчивость) превышают качества современных цементов.

В Смоленске Носов брал четыре образца раствора из разных мест. Оказалось, что их составы довольно сильно отличаются между собой.

Как пояснил ученый корреспонденту Infox.

ru, видимо, у древних мастеров не было устоявшейся рецептуры приготовления этого вещества, и каждый раз получалось по-разному.

Образец современного раствора, использованный реставраторами, оказался весьма похож на древнерусский, однако оказался плохо перемешан. Зато средневековые образцы из Уэльса и Англии очень похожи на русские растворы XVI-XVII веков.

Несмотря на все полученные данные, ученым еще предстоит выполнить большую работу, чтобы сделать выводы об общей эволюции строительных растворов на Руси и их использовании в культовых, военных и гражданских сооружениях.

По словам Носова, также интересно было бы сравнить древнерусские растворы с итальянскими, так как в Россию приезжали и иностранные мастера, например Аристотель Фиораванти (примерно 1415—1486), который построил Успенский собор в Москве.

Статья об исследовании строительных растворов русских крепостей XVI-XVII веков опубликована в журнале «Российская археология» (№ 1, 2009).

Источник: https://www.infox.ru/news/10/science/universe/24268-drevnerusskij-rastvor-okazalsa-lucse-sovremennogo-cementa

ТехЛиб СПБ УВТ

П. А. Раппопорт. Строительное производство Древней Руси (X-XIII вв.) .

Фундамент древнейшего памятника русского монументального зодчества — Десятинной церкви — был детально изучен при раскопках 1908 —1914 и 1938 —1939 гг. Фундаментные рвы местами были отрыты по ширине фундаментов, а местами значительно их превосходили (ширина рвов 2.1 м при при ширине фундаментов 1.1 м). Выемка грунта сделана не только под фундаментами, но широким котлованом и под всей площадью апсид.

Дно фундаментных рвов и площадки под апсидами были укреплены деревянной конструкцией, которая состояла из четырех-пяти лежней, уложенных вдоль направления стен и закрепленных многочисленными деревянными кольями. Выше поперек лежней первого яруса располагался второй ярус. Лежни имели круглое или прямоугольное сечение, колья — диаметр 5 —7 см и длину около 50 см. Вся эта деревянная конструкция была залита слоем известково-цемяночного раствора, а над ней находился фундамент, состоящий из крупных камней (кварцит, песчаник, валуны), тоже залитых известково-цемяночным раствором.

Кроме Десятинной церкви фундаменты такой же конструкции были обнаружены в дворцовых зданиях, расположенных к северо-востоку и юго-западу от Десятинной церкви, в церкви на территории митрополичьей усадьбы (вероятно, церковь Ирины), в Золотых воротах (рис. 45,46). В здании дворца, находящегося к юго-западу от Десятинной церкви, удалось установить, что применялись лежни как дубовые, так и сосновые. В здании дворца, расположенного к юго-востоку от Десятинной церкви, выявлена аналогичная конструкция под фундаментом, но лежни здесь были не только закреплены кольями, но и соединены между собой железными костылями. Судя по обнаруженным следам лежней и кольев, деревянные субструкции имелись в киевском и новгородском Софийских соборах.

Рис. 45. Субструкции под фундаментом церкви в Киеве на митрополичьей усадьбе. Снимок 1910 г.   Рис. 46. Субструкции под фундаментом здания дворца в Киеве (к юго-западу от Десятинной церкви). Снимок 1911 г.

Таким образом, можно утверждать, что вышеописанная конструкция фундаментов была характерна для памятников русской архитектуры, возведенных в конце X и до второй половины XI в. Во всех зданиях этой поры отмечено наличие ленточных фундаментов, имеющих деревянную субструкцию из лежней, укрепленных деревянными кольями. Впрочем, очевидно, существовали и отклонения от названного приема, поскольку в киевской Георгиевской церкви следов деревянной субструкции под фундаментом не обнаружено.

Последним по времени памятником, в котором применена подобная деревянная субструкция, являлся, по-видимому, собор Кловского монастыря в Киеве (80 —90-е гг. XI в.). В нем котлован был отрыт под всей площадью храма и его дно укреплено деревянными кольями. Лежни, кроме того, были соединены между собой железными костылями. (Мовчан I.I., Харламов В.О. Стародавнiй Клов // Археологiя Киева: Дослiдження i матерiали. Киiв, 1979. С. 75; Новое в археологии Киева. Киев, 1981. С. 215.)

Технический смысл деревянной субструкции под фундаментом долгое время вызывал недоумение исследователей и давал основание для далеко идущих и совершенно неверных исторических выводов. Так, Ф.И. Шмит полагал, что деревянная субструкция под фундаментом свидетельствует о желании строителей создать некую замену каменному скальному грунту, и делал из этого вывод, что только «кавказцы могли изобрести тот способ закладки фундаментов, который мы видим в постройках Владимира Святого». (Шмит Ф.И. Искусство Древней Руси—Украины. Харьков, 1919. С. 35.) А.И. Некрасов тоже считал, что деревянная субструкция, «возможно, имитирует каменную выровненную площадку, привычную для строителей, приехавших с Востока». (Некрасов А.И. Очерки по истории древнерусского зодчества XI—XVII вв. М., 1936. С. 22.) Впрочем, в отличие от Шмита, он полагал, что эта традиция связана скорее с Малой Азией, чем с Кавказом. Между тем в действительности деревянная субструкция не имеет никакого отношения ни к скальным грунтам, ни к восточным традициям, поскольку является обычным техническим приемом, вполне рациональном при грунтах средней плотности. В строительных руководствах вплоть до середины

XIX в. отмечали, что «лежни составляют у нас самый употребительнейший способ укрепления деревом подошвы строений». (Красовский А. Гражданская архитектура. 2-е изд. М., 1886. С. 37; 1-е изд. СПб., 1851. Правда, в наставлениях конца XVIII в. применение лежней под фундаментом (ростверк) рекомендуется при рыхлом или болотистом грунте (Краткое руководство к гражданской архитектуре или зодчеству. СПб., 1789. С. 22) При этом при ширине фундамента около 1 м рекомендовалось укладывать три параллельных лежня, а промежутки между ними затрамбовывать камнем и щебнем. Вряд ли могут быть сомнения, что конструкция фундамента Десятинной церкви — обычный византийский прием. Правда, до настоящего времени данный прием обнаружен лишь в провинциальных византийских постройках, однако, вероятно, подобные конструкции будут встречены и в самом Константинополе. (Лежни под фундаментом, скрепленные в перекрестьях железными костылями и залитые раствором, известны, например, в церкви в Сардах (западная часть Малой Азии), относящейся к первой половине XIII в. (Buchwald H. Sardis church E — a preliminary report // Jb. der Osterreichischen Byzantinistik. Wien, 1977. Bd 28. S. 274). Укрепление дна фундаментных рвов деревянными колышками и лагами отмечено в некоторых памятниках Болгарии IX в. (Михайлов С. 1) Археологически материалы от Плиска // Изв. на Ареол. ин-т. София, 1955. Т. 20. С. 14, 115; 2) Дворцовата църква в Плиска // Там же. С. 250, 251)

Во второй половине XI в. намечается явная тенденция к упрощению деревянных субструкций под фундаментами. Сами фундаменты делают по-прежнему из крупных камней на растворе, но лежни под ними укладывают теперь не в два, а лишь в один слой и не укрепляют забитыми в землю кольями. Часто лежни соединяют в местах пересечения железными костылями. Видимо, именно так были исполнены деревянные конструкции в церкви на Владимирской улице в Киеве, в расположенном рядом с этой церковью дворцовом здании, в полоцком Софийском соборе.

Рис. 47. Следы лежней под фундаментом церкви в Киеве на усадьбе Художественного института  Рис. 48. Железные костыли на пересечении лежней. Киев. Церковь на усадьбе Художественного института

Конструкция из лежней, скрепленных железными костылями, отмечена во многих памятниках киевской архитектуры конца XI —начала XII в.: Борисоглебском соборе в Вышгороде, Большом храме Зарубского монастыря, церкви на усадьбе Художественного института, церкви Спаса на Берестове (рис. 47,48).

В Переяславле из трех памятников, возведенных в конце XI в., лежни имеются в двух — Михайловском соборе и церкви Андрея, но отсутствуют под фундаментом епископских ворот. В церкви Андрея кроме железных костылей пересечения лежней укреплены также и кольями. В остальных памятниках переяславльской архитектуры, относящихся, по-видимому, уже к началу XII в., лежни отсутствуют. В Чернигове лежни под фундаментом обнаружены лишь в двух наиболее ранних (не считая Спасского собора) памятниках — соборе Елецкого монастыря и Борисоглебском. В Полоцке деревянная субструкция из лежней, скрепленных железными костылями, имеется лишь в одном, тоже наиболее раннем памятнике зодчества XII в. — Большом соборе Бельчицкого монастыря. В Смоленске лежни выявлены только в Борисоглебском соборе Смядынского монастыря — первом памятнике самостоятельного смоленского зодчества (1145 г.). В Новгороде подобная субструкция есть под фундаментами в церкви Благовещения на Городище, в соборах Антониева и Юрьева монастырей (первые два десятилетия XII в.). В апсидах лежни обычно перекрещивались под прямым углом, но часто, кроме того, вводились диагональные (рис. 49). В Михайловском соборе Переяславля выявлена иная система: здесь короткие отрезки лежней были размещены радиально (рис.50).

Рис. 49. Церковь Андрея в Переяславле. План раскопанных фундаментов   Рис. 50. Следы лежней в апсиде церкви Михаила и Переяславле

В начале — первой половине XII в. прием укладки лежней под фундамент, очевидно, перестают использовать. Несколько позже, чем в других землях, удерживается применение лежней в новгородской архитектуре. Здесь лежни отмечены в церквах Климента и Успенской в Старой Ладоге (50-е гг. XII в.), а также в церкви Бориса и Глеба в новгородском детинце (1167 г.). В виде исключения известен один пример применения лежней во владимиро-суздальском зодчестве — в Успенском соборе г. Владимира.

Отказ от укладки деревянных лежней под основание фундамента на первых порах не отразился на характере самих фундаментов. По-прежнему их делали из крупных камней на известково-цемяночном растворе. Таковы фундаменты Кирилловской церкви в Киеве, а также большинства храмов в Переяславле — Спасской церкви-усыпальницы, церквей на площади Воссоединения и на Советской улице, Воскресенской церкви. Следует отметить, что в памятниках Переяславля (в отличие от Киева) в кладке фундаментов вместе с камнями довольно широко использовали и кирпичный бой. В маленькой бесстолпной церкви, расположенной под более поздней Успенской, фундамент также на растворе, но сложен он не из камней, а из битого кирпича. В Старой Рязани каменный фундамент на растворе отмечен в Успенской и Борисоглебской церквах.

Фундаменты из камней на растворе, но без деревянной субструкции становятся характерными для владимиро-суздальской и галицкой архитектурных школ. Здесь применяли разные породы камня, иногда использовали крупные камни, иногда мелкие, иногда отесанные блоки, но всегда без деревянной субструкции и обязательно на известковом растворе. То же характерно и для новгородского зодчества, где фундаменты клали из валунов на известковом растворе. На Волыни в середине XII в. для фундаментов стали употреблять не только камень, но и кирпич. Например, в церкви «Старая кафедра» фундаменты сложены в основном из кирпича, большей частью на растворе, но местами насухо. В церкви, раскопанной близ Васильевской церкви во Владимиро-Волынском, фундаменты также из кирпичей на растворе. В черниговской Благовещенской церкви (1186 г.) фундамент из валунов на растворе, впрочем, со значительной добавкой кирпича. Своеобразный характер имеет фундамент киевской церкви Успения на Подоле. Здесь фундаменты сложены из бутового камня на растворе с чередующимися прослойками из трех-четырех выравнивающих рядов кирпичей.

Следует отметить, что в фундаментах самой различной конструкции иногда применяли кирпич, используя для этой цели получавшийся при обжиге брак (большей частью пережог). Так поступали и в XI в. (например, в Большом храме Зарубского монастыря), и в конце XII в. (церковь в Трубчевске).

Устройство фундаментов без деревянной субструкции, по обязательно на растворе сохраняется во владимиро-суздальской, галицкой, новгородской архитектурных школах до монгольского вторжения. Применяли такие фундаменты вплоть до XIII в. и в киево-черниговском зодчестве. Так, церковь Василия в Овруче имеет фундамент из песчаника на растворе, церковь в Путивле — из булыжников, а выше — из кирпичей на растворе. Применяли здесь и чисто кирпичные фундаменты па растворе, как например в черниговской церкви Пятницы. Иногда на растворе сложен лишь верх фундаментов, а ниже камни лежат насухо. Видимо, в этом случае раствор проливали сверху и он не доходил до нижних частей фундамента. Таковы фундаменты Спасской церкви, церкви на Советской улице в Персяславле и т.д.

Отмечено, что в ряде случаев раствор в фундаменте в качестве заполнителя содержит не цемянку, а песок (собор Выдубицкого монастыря в Киеве) или известковую крошку (несколько памятников в Новгородской земле второй половины XII —начала XIII в.). Очень вероятно, что кладка фундамента в этих памятниках велась в то время, когда плинфа еще не была завезена на строительство, и поэтому изготавливаемую из кирпичного боя цемянку здесь заменяли естественными материалами, имевшимися под руками.

Во второй половине — конце XII в. помимо широкого применения кирпича отмечены случаи, когда фундаменты клали не на известковом растворе, а на глине. В Киеве так сложены фундаменты церкви на Вознесенском спуске и круглого здания (ротонды), в Белгороде — церкви Апостолов.

В Смоленске фундаменты, сложенные на глине, применяли в постройках середины-второй половины XII в. — церкви в Перекопном переулке, «Немецкой божнице», церкви Василия (здесь часть фундаментов сложена из булыжников, а часть — из битого кирпича). В отдельных случаях кладку фундаментов на глине применяли в Смоленске и позже, вплоть до начала XIII в., — в церкви на Малой Рачевке и соборе Спасского монастыря в Чернушках. Однако в целом с конца XII в. в Смоленске перешли к устройству фундаментов, сложенных из булыжников насухо. Еще раньше, в первой половине XII в., такой прием появился в Полоцке, где фундаменты, сложенные из мелких булыжников насухо, использовали уже в храме-усыпальнице Евфросиньева монастыря и церкви на Нижнем замке, а затем в Спасской церкви Евфросиньева монастыря. Кроме Смоленска и Полоцка устройство фундаментов насухо характерно для всех построек гродненской архитектурной школы. Так же сделаны фундаменты церкви в Турове. Фундаменты, сложенные насухо, имеются и в тех зданиях, которые смоленские зодчие возводили в других русских землях, — в новгородской Пятницкой церкви, Спасской церкви Старой Рязани и в маленькой бесстолпной церкви Нового Ольгова городка (у д. Никитине). В Киеве из битых кирпичей насухо сложен фундамент собора Гнилецкого монастыря.

По распределению материалов в фундаментах можно судить о системе работы. Так, в Десятинной церкви различные породы камня расположены по отдельности в разных местах фундамента. Очевидно, что участки фундамента здесь заполняли камнями сверху донизу по мере поступления их на строительную площадку. Чаще же различные сорта камня (или камни разного размера) разделены в фундаментах не по участкам, а по глубине залегания. В этих случаях фундаменты, видимо, заполняли послойно, но на всей площадке одновременно. Естественно, что тогда в фундаментах можно отметить слои разных материалов, в частности прослойки кирпичного боя в каменных фундаментах. Иногда это приводило к слоистой структуре всего фундамента. Так, в церкви на Садовой улице во Владимире-Волынском (60-е гг. XII в.) фундаменты состоят из перемежающихся слоев битой плинфы и известковой массы, причем видно, что каждый слой плинфы укладывался на уже схватившийся слой извести. (Пескова А.А., Pannonopm П.А. Неизвестный памятник Волынского зодчества XII в. // ПКНО: Ежегодник 1986. Л, 1987. С. 541.)

Подобные слоистые фундаменты представлены также в нескольких памятниках конца XII — начала XIII в. — церкви в Нестеровском переулке в Киеве, в Трубчевске, соборе в Новгороде-Северском, Спасской церкви в Ярославле. В киевской церкви фундаменты состоят из чередующихся слоев щебня на растворе и глины; в Трубчевске чередуются камни, битый кирпич, песок; в Новгороде-Северском — крупные камни и мелкая щебенка. При этом в новгород-северском храме такая слоистость присутствует лишь в фундаменте западной стены, тогда как на других участках фундамент сложен из крупных камней на растворе.

Таким образом, несомненно, что в конце X —середине XIII в. в русском зодчестве имела место существенная и достаточно четко выявляемая эволюция конструкции фундаментов. (Особенно ясно это удалось проследить на памятниках Новгорода (Штендер Г.М. Древняя строительная техника как метод изучения русского зодчества // Архитектурное наследие и реставрация. М., 1986. С. 10, 11) Причем если в XI в. эволюция эта была более или менее единой, то в XII в. появились различные варианты, характерные для местных архитектурных школ.

Картина конструкции фундаментов еще далеко не во всем ясна, поскольку во многих памятниках фундаменты изучены слабо, а в некоторых вообще не исследованы. Кроме того, нужно учитывать, что следы деревянных конструкций под фундаментами сохраняются обычно лишь благодаря их отпечаткам в растворе. В тех случаях, когда нижняя часть фундаментов имела мало раствора или же была сложена насухо, следы деревянной конструкции могли исчезнуть полностью. Далеко не всегда к тому же общая тенденция эволюции в равной мере отражена во всех памятниках. Так, совершенно ясно, что в XI в. для фундаментов использовали, как правило, крупные камни, но постепенно в течение XII в. перешли на мелкий булыжник. Однако известны памятники, не отвечающие этой общей тенденции. Например, в смоленской Пятницкой церкви, построенной в начале XIII в., в фундаменте уложены очень крупные камни.

Отклонения от общепринятого типа конструкции имеются и в связи с назначением зданий. Так, в княжеских теремах Смоленска и Полоцка фундаменты сложены на растворе, тогда как в одновременных им храмах — насухо. Очевидно, что изменение конструкции фундаментов связано здесь с наличием у теремов полуподвального этажа.

Далеко не прямолинейно происходил также и процесс перехода от ленточных фундаментов к системе самостоятельных фундаментов под каждую опору. Ленточные фундаменты, т.е. фундаменты, проходящие не только под стенами, но и там, где над ними нет надземных частей, были характерны для наиболее древних памятников русского зодчества. Такая система — сплошная сетка ленточных фундаментов — использована уже в Десятинной церкви. Позднее, в памятниках XI в., всюду тоже отмечена сетка ленточных фундаментов, на местах пересечения которых стояли столбы. Достаточно широко применяли сетку ленточных фундаментов в первой половине и даже в середине XII в. во всех основных строительных центрах Древней Руси. Так, подобные фундаменты выявлены в церкви «Старая кафедра» близ Владимира-Волынского, в Успенском соборе Старой Рязани, в Воскресенской церкви Переяславля, в Успенском соборе Галича и в некоторых других памятниках. В новгородском зодчестве ленточные фундаменты использованы в церкви Климента Старой Ладоги (1153 г.) и в Борисоглебской церкви Новгорода (1167 г.).

Однако уже в некоторых памятниках рубежа XI —XII вв. зодчие начинают упрощать систему фундаментов, тем самым сокращая их протяженность. Так, например, в Большом храме Зарубского монастыря на Днепре имеются только поперечные ленточные фундаменты, а продольные отсутствуют. В церкви Спаса в Галиче (вероятно, 40-е гг. XII в.), наоборот, есть только продольные ленты фундаментов и нет поперечных. В XII в. появляются постройки, в которых ленточные фундаменты, проходящие насквозь через все здание, вовсе не применяются, а используются лишь ленточные, соединяющие столбы со стенами. Так, в Борисоглебском соборе Смядынского монастыря в Смоленске западные и восточные столбы соединены ленточными фундаментами с боковыми стенами, тогда как средние столбы имеют самостоятельные отдельные опоры.

Короткие участки ленточных фундаментов, соединяющие столбы со стенами, продолжали устраивать вплоть до XIII в. В соборе Троицкого монастыря в Смоленске восточные столбы соединены с боковыми стенами, а западные — с западной стеной. Особенно часто соединяли фундаменты восточных столбов с межапсидными стенками. Примерами могут служить некоторые памятники Смоленска (церкви на Чуриловке, на Большой Краснофлотской улице, Пятницкая), церкви в Волковыске, на Северянской улице в Чернигове и др. Впрочем, уже в XII в. во многих случаях отказываются даже от таких отрезков ленточных фундаментов и делают фундаменты только под стенами и отдельно под каждым столбом. В чистом виде данная система представлена, например, церковью Пантелеймона в Новгороде и Спасской церковью в Старой Рязани. Однако даже на рубеже XII —XIII вв. возводят еще храмы со сплошной сеткой ленточных фундаментов (церковь Пантелеймона близ Галича).

Ширина фундаментов большей частью равнялась толщине стен. Для выступающих пилястр в фундаменте обычно делали соответствующие расширения. Такие расширения, отвечающие выступам пилястр, зафиксированы уже в самых ранних памятниках, начиная с Десятинной церкви. Для памятников XII в. очень характерны расширения фундамента, на которые опираются полуколонны пилястр Борисоглебского собора на Смядыни в Смоленске или Успенского собора Елецкого монастыря в Чернигове. Еще четче проявился этот прием в памятниках конца XII —начала XIII в., в которых пилястры имели сложнопрофилированную форму и значительный вынос. Хорошим примером может служить фундамент Спасской церкви в Старой Рязани. Однако иногда фундаменты стен сооружали в виде ровной ленты, не уширяя их под пилястрами, как это видно в Борисоглебском соборе Вышгорода. В таких случаях общую ширину фундамента делали несколько больше толщины стен, чтобы выступающие пилястры могли опираться на обрез фундамента. Кое-где выступ фундамента от плоскости стен имеет довольно значительную ширину — до 40 см, как в киевской Кирилловской церкви.

Боковые стенки фундамента обычно делали вертикальными, и поэтому его ширина в нижней и верхней частях бывала одинаковой. Однако известны случаи, когда основание фундамента делали более широким. Так, в Борисоглебском соборе Вышгорода основание фундамента представляет собой подушку на дне фундаментного рва шириной 2.3 м, а ширина самого фундамента 1.5 —1.8 м. Впрочем, иногда, наоборот, фундамент книзу сужался. Например, в новгородской церкви Ивана на Опоках боковые стенки фундамента вверху вертикальные, а в нижней части довольно резко суженные.

В двух архитектурных школах Древней Руси — галицкой и владимиро-суздальской — фундаменты существенно отличаются по форме. Здесь, как правило, их делали значительно более широкими, чем стены. В Успенском соборе Галича толщина стен 1.4 —1.5 м, а ширина фундамента 2.25 м. Около 2 м ширина фундамента в церкви Спаса близ Галича. Также около 2 м ширина фундамента церкви в Василеве, в то время как толщина стен этой церкви 1.3 м. Не изменилось положение и к концу XII в.: в церкви Пантелеймона фундамент шире стен на 50-60 см. Изучение фундамента церкви в Василёве показало, что значительную ширину он имеет только в верхней части, а книзу заметно сужается. В церкви же Спаса стенки фундамента вертикальные.

Такую же картину можно наблюдать и во владимиро-суздальских памятниках. В церкви Георгия во Владимире фундамент шире стен на 50 см. в Дмитриевском соборе — на 70 см, в Спасском соборе Переславля-Залесского — более чем на 1 м (в восточной части храма — на 1.45 м). Значительно шире стен фундаменты ворот Владимирского детинца и Георгиевского собора в Юрьеве-Польском. Следует отметить, что у фундаментов владимиро-суздальских построек стенки часто не вертикальные, а сужаются книзу. Так, фундамент церкви в Кидекше образует выступ-платформу шириной до 60 см, но книзу он резко сужается до ширины стен. Раскопки фундамента собора в Переславле-Залесском выявили, что и здесь фундамент имеет большую ширину только в верхней части; боковые стенки его вначале пускаются вертикально, а ниже фундамент резко сужается. Впрочем, во владимиро-суздальском зодчестве известны примеры и иной формы фундаментов — заметно расширяющихся книзу (собор Рождественского монастыря, Дмитриевский собор, Успенский собор эпохи Всеволода). (Столетов А. В. Конструкции владимиро-суздальских белокаменных памятников и их укрепление // Памятники культуры: Исслед. и реставрация. М., 1959. Т. 1. С. 18S.)

Глубина фундаментов в памятниках зодчества домонгольской поры очень различна. Однако в этом разнообразии можно выявить определенную закономерность. Прежде всего ясно, что древние мастера считали совершенно необходимым врезать фундамент в плотный материковый грунт или в крайнем случае опереть на него подошву фундамента. (По-видимому, такой принцип господствовал и у византийцев (Милонов Ю.К. Строительная техника Византии // Всеобщая история архитектуры. Л.; М., 1966. Т. 3. С. 179). Очевидно, это древняя традиция: еще Витрувий рекомендовал копать фундаментный ров до материка, «если можно до него дойти» (см.: Витрувий. Десять книг об архитектуры. М., 1936. С. 32) Поэтому очень часто глубина фундамента определяется глубиной залегания материкового грунта. Совершенно отчетливо видно это стремление зодчих в переяславльском Михайловском соборе.

В районе южной части храма здесь на глубине около 0.5 м залегает слой чистого лёсса, но на глубине 1.25 м он кончается и сменяется жирным черным гумусом. На глубине 1.75 м от древней поверхности вновь начинается плотный лёсс. Зодчие придали фундаменту южной стены храма глубину, равную 1.75 м, т.е. дошли до нижнего слоя лёсса. Однако в восточной части той же южной стены слой лёсса начинается на глубине 1.4 м, и поэтому здесь зодчие ограничились фундаментом глубиной 1.45 м. Очевидно, что строители заранее знали, на какую глубину будут закладывать фундамент, т.е. до начала строительства проводили разведку грунта с помощью закладки шурфов.

Не менее показательный пример — Спасская церковь Евфросиньева монастыря в Полоцке. Здание стоит на небольшом возвышении, образованном линзой красной глины. Строители прорезали этот слой глины и на глубине 1 м оперли подошву фундамента на плотный материковый песок. В памятниках Смоленска фундаменты всюду прорезают культурный слой и врезаются в материк. Там, где материк залегал на значительной глубине (1.2 — 1.3 м), соответственно и фундамент делали глубже, чтобы врезаться в этот плотный слой или хотя бы достичь его. Впрочем, в отдельных случаях, как например в церкви на Большой Краснофлотской улице, подошва фундамента (глубина 1.1 м) опирается не на материк, а на плотный предматериковый слой грунта; очевидно, строители посчитали это достаточным.

Случаи, когда подошва фундамента не доходит до плотного материкового грунта, очень редки. Таковы фундаменты церкви Климента в Старой Ладоге, имеющие глубину 1.5 м, не доходящие до материка, поскольку культурный слой здесь чрезвычайно мощный. Однако и в Ладоге строители стремились дойти до материка, и там, где культурный слой был меньшей толщины, достигали этого (Никольский собор в Старой Ладоге, глубина фундамента около 1 м; Успенская и Георгиевская церкви там же — глубина всего 50 —70 см).

Кроме глубины залегания материка заложение фундаментов несомненно зависело и от веса здания. Это хорошо прослеживается в тех памятниках, где основной объем храма и более легкие его части (галереи, притворы) имеют разную глубину фундаментов. Глубина фундамента Успенского собора Елецкого монастыря в Чернигове 1.6 м, а его притворов — всего 1 м. В черниговском Борисоглебском соборе глубина фундамента основного объема очень большая — 2.4 м, а его галерей — 1.1 м; в смоленской церкви Ивана Богослова — соответственно 1.2 и 0.9 м. Такая же картина в смоленской церкви Спасского монастыря в Чернушках и ряде других памятников.

Зависимость глубины фундаментов от веса здания хорошо отражена и в очень мелком заложении фундаментов большинства гражданских построек, поскольку дворцовые сооружения несомненно имели меньший вес, чем храмы. Глубина фундаментов дворцов, расположенных рядом с Десятинной церковью, 60 и даже 45 см (соответственно здания к юго-востоку и северо-востоку от церкви). Глубина фундамента терема в Смоленске всего 20 —30 см, а терема в Гродно — 30-40 см.

Не вполне ясно, учитывали ли древние строители глубину промерзания почвы. В средней полосе России максимальная глубина промерзания несколько превышает 1 м. (В Смоленске средняя глубина промерзания грунта 0.66 м; максимальная — 1.15 м; расчетная, принимаемая при современном проектировании, — 1.4 м.) В большинстве случаев глубина заложения фундаментов превосходит эту величину. Так, в Десятинной церкви глубина фундаментов 1.4 м, в киевской Софии — около 1.1 м, в полоцком Софийском соборе — 1.35 м, в новгородской Софии — 1.8-2.5 м, в черниговском Спасе — более 2 м. Среди монументальных памятников XI —начала XIII в. глубину фундамента менее 1 м имеют очень немногие — церковь на усадьбе Художественного института в Киеве (60 —70 см), некоторые небольшие храмики Переяславля (церковь на площади Воссоединения — 70 см, церковь Андрея — 50 см). Как правило, не менее чем на 1.4 м заглублены фундаменты в памятниках галицкого и владимиро-суздальского зодчества. Однако во второй половине XII в. случаи мелкого заложения фундаментов все же нередки. Так, фундаменты мельче 80 см в Смоленске отмечены у церквей Василия, на Окопном кладбище, на Протоке, Спасского монастыря в Чернушках. В Киеве совсем мелкие фундаменты имеет церковь на Вознесенском спуске. Особенно неглубоки фундаменты у ряда новгородских храмов конца XII —начала XIII в.: у церквей Успения в Аркажах, Пантелеймона, Спаса-Нередицы, на Перыни. Однако во всех этих случаях подошва фундамента лежит на материковом плотном грунте или даже врезается в него. Закладка фундаментов выше уровня промерзания не может считаться признаком низкой квалификации строителей, поскольку такие фундаменты могут быть вполне рациональны в том случае, если под их подошвой находится плотный материковый грунт и нет грунтовых вод.

Своеобразную картину можно видеть в церкви Климента Старой Ладоги (1153 г.). (Большаков Л.Н., Раппопорт П.А. Раскопки церкви Клемента в Старой Ладоге // Новое в археологии Северо-Запада. Л., 1985. С. 111.) Здесь общая глубина фундамента около 1.5 м. Врезан он в мощный культурный слой, далеко не достигая материка. До глубины 0.75 м котлован был отрыт под всей площадью храма, а фундаментные рвы имели глубину еще около 0.75 м. После укладки фундаментов (вероятно, с помощью деревянной опалубки) пространство котлована между фундаментами было заполнено слоями песка и известкового раствора. В полоцкой церкви на Рву (вторая половина XII в.) обычный фундамент был заглублен на 1.05 м, причем нижние 10-15 см врезаны в материк. (Раппопорт П.А. Полоцкое зодчество XII в. // СА.1980. №3. С. 156.) Однако в восточной части храма уровень почвы, видимо, резко понижался, и устройство фундамента здесь иное: его глубина всего 70 см (из них нижние 30 см — в материке); выше уровня земли была сделана искусственная подсыпка, состоящая из слоя извести, и общая высота фундамента поэтому примерно 1 м. Наконец, совсем особняком стоит фундамент полоцкой церкви на Нижнем замке (первая половина XII в.). (Там же. С. 153.) Здесь фундаментные рвы врезаны в мощный культурный слой всего на 30 —35 см и намного не доходят до материка. Затем вся площадка была поднята на 70 см подсыпкой чистого ярко-желтого суглинка. Каменные фундаменты также подняты на эту высоту, и в результате общая высота их получилась равной приблизительно 1 м. В той части, где фундаменты проходят сквозь подсыпку, стенки их вертикальные, а ниже, т.е. в фундаментных рвах, слегка наклоненные, и фундаменты книзу сужаются. В этом памятнике отмечены и дополнительные фундаменты, параллельные главным, но заглубленные только в искусственную подсыпку. В подошве фундамента имеется слой горелого дерева и обожженных камней, а ниже желтой подсыпки обнаружено несколько погребений; очень вероятно, что это остатки деревянной церкви на каменном основании, сгоревшей до постройки кирпичного храма.

Как видно во всех этих случаях, структуру фундаментов с подсыпкой грунта применяли там, где не могли опереть их подошву на плотный материковый грунт. Видимо, выборка сплошного котлована и устройство мощной подсыпки должны были обеспечивать пол храма от оседания на мягком грунте, а искусственный подъем уровня земли в церкви на Нижнем замке, быть может, связан с наличием на этом участке остатков сгоревшей более ранней деревянной церкви. В церкви Успения на Подоле в Киеве мастера также должны были учитывать, что ведут строительство на месте разрушившейся более ранней церкви. Кроме того, здесь нужно было считаться еще и со сложными геологическими условиями киевского Подола. Поэтому они отрыли общий котлован под все здание, а ниже заложили фундаментные рвы: ленточные фундаменты подняли до уровня дна котлована, а выше вели кладку только под стенами и столбами. Общая глубина фундаментов здесь получилась совершенно необычной для древнерусских памятников — около 4 м. (Ивакин Г.Ю. Исследование церкви Пирогощи // Древнерусский город. Киев, 1984. С.40.) Впрочем, в начале XIII в. известны примеры, когда фундамент отрывался в виде сплошного котлована и в менее сложных условиях. Таковы фундаменты Пятницкой церкви в Чернигове, Спасского собора в Новгороде-Северском, Спасского собора в Ярославле.

Верхняя поверхность фундамента всегда тщательно промазывалась раствором. Такие слои заглаженного раствора бывали неоднократно находимы при изучении памятников. Примером может служить собор Выдубицкого монастыря в Киеве. В черниговском соборе Елецкого монастыря отмечено, что слой раствора несколько выступал в сторону от фундамента и закрывал стык фундамента и края фундаментного рва. Выше, как правило, делалась кирпичная вымостка. Конструктивный смысл такой вымостки совершенно ясен — это слой, выравнивающий фундамент и создающий на нем ровную платформу, на которой возводятся стены и столбы здания. Вымостка иногда равна ширине фундамента, но чаще несколько шире его, выступая над ним как козырек. Верх вымостки расположен в уровне почвы, окружающей здание, и поэтому ее козырек мог защищать фундамент от проникновения дождевой воды. Толщина вымостки различна. Изредка это один слой кирпичей. Подобные вымостки обнаружены, например, в церкви Спаса на Берестове в Киеве, в нереяславльской Спасской церкви, в смоленских церквах Василия и на Малой Рачевке, в нескольких памятниках новгородского зодчества (церковь Георгия в Старой Ладоге, Ивановский собор в Пскове). Чаще, однако, вымостки делали более толстыми, в два-три ряда кирпичей. Такие отмечены в нескольких памятниках Смоленска, Полоцка, Волыни. Кое-где вымостки имеют еще большую толщину. Так, в киевской Кирилловской церкви вымостка сделана в шесть рядов кирпичей. В черниговской Благовещенской церкви толщина вымостки шесть-семь рядов, из них три выступают наружу в виде отмостки. Разнообразные варианты толщины и типов вымостки изучены в Смоленске. Толщина ее здесь колеблется от одного до девяти рядов кирпичей, причем, спускаясь вниз от поверхности земли на значительную глубину, иногда вымостка как бы частично заменяет собой каменный фундамент. В уровне поверхности земли вымостка порой расширяется до нескольких рядов кирпичей: создавая вокруг стен и особенно столбов кирпичную отмостку, лежащую на земле или на слое глины. Сама вымостка, как правило, сделана на растворе, хотя известны примеры, когда кирпичную вы мостку делал и на глине (в Смоленске — собор на Протоке и Воскресенская церковь). Вымостка обычно покрывает фундамент не только там, где выше стоят стены, но и там, где стен нет, например, поверх ленточных фундаментов.

Контур вымостки, как правило, лишь очень обобщенно передает очертания вышележащих частей здания. Так, например, в Борисоглебском соборе Смядынского монастыря в Смоленске вымостка на местах пилястр образует большие неправильно округлые расширения, а в черниговском Елецком соборе — прямоугольные выступы. В соборе Троицкого монастыря на Кловке в Смоленске в западной части здания вымостка образует под пилястрами прямоугольные расширения, а в восточной — довольно детально прорисовывает форму вышележащих пучковых пилястр. В здании терема в Гродно вымостка, имеющая толщину в три кирпича, покрывает в восточной части здания пространство шириной почти в 2.3 м, служа основанием двум параллельным стенкам и небольшому помещению между ними. (Раппопорт П.А. Новые данные об архитектуре древнего Гродно // Древнерусское искусство. М., 1988. С. 65.)

Совершенно особый характер имеет фундамент церкви Покрова на Нерли. Здесь мастера получили задание построить храм на участке заливаемой поймы. Поэтому, заложив фундамент до материковой глины, они поставили на него не само здание, а белокаменный цоколь, отвечающий по плану зданию будущего храма. Подняв цоколь на высоту 3.7 м, засыпали его землей, превратив, таким образом, в искусственный холм. На вершине холма, выше уровня паводковых зон, на цоколе и была построена церковь Покрова. (Воронин Н.Н. Зодчество Северо-Восточной Руси XII— XV вв. М., 1961. Т. 1.С. 279.)

П. А. Раппопорт

. Строительное производство Древней Руси (X-XIII вв.).

Читать по теме:

Способными были!!! (Основание и фундамент)

Здравствуйте, уважаемые читатели!

Предупреждала же, что о Монферране непременно вспомнится :о)

«Постройки, помещаемые под зданием, и не приносящие никакой непосредственной пользы, но предназначенные только для принятия на себя всего груза строения и для передачи его материку, называются основанием строения.Оно состоит из двух частей:1. укрепления подошвы здания2. фундамента.Фундамент — есть нижняя часть строения, простирающаяся ниже поверхности земли до встречи с земным пластом, который способен сопротивляться давлению, производимому грузом строения.Верхняя поверхность грунта, соприкасающаяся с нижнею поверхностью фундамента, та поверхность, по которой давление фундамента передаётся земле, называется подошвою здания.» (Красовский А. «Гражданская архитектура . Части зданий. 1886г)

Поскольку речь зашла о том, как был построен памятник Александру II в самом конце XIX века, то для понимания сложности решённой зодчими инженерной задачи по сооружению основания памятника я приведу предыдущий опыт строительства в России.

Взгляд из нашего времени:

«Как правило, информация о конструкции фундаментов и, тем более, об их техническом состоянии, в исторических чертежах отсутствует. Архитекторы прошлых столетий, за редким исключением, фундаменты на чертежах не изображали. Назначение конструкции, материалов, основных размеров фундаментов было прерогативой подрядчика, который опирался на вековую традицию, собственный опыт. Качество фундаментов во многом зависело от порядочности подрядчика, как профессионала. Тип фундамента определялся массой здания, грунтовыми условиями площадки, о которой не всегда имелась достаточная информация, набором местных материалов.

По указанным причинам до 60-х годов 20 века обеспечить зданиям безосадочное основание было технически не возможно, поскольку деревянные сваи не могли быть длиннее 12 м. Пример Исаакиевского собора подтверждает сказанное. Известно, что это здание, размерами в плане примерно, 100х100 м, имеющее массу около 3000000 кН, построено на фундаменте в составе которого 24000 деревянных свай и сплошная плита из природного камня, заглубленная в грунт на 5 м. Затраты на этот фундамент были весьма велики: по смете, имеющейся в архиве, они составили 10% затрат (2 млн. рублей серебром). Несмотря на это осадка здания превысила 1 м, разность осадки, выразившаяся в форме крена полов здания достигла почти 40 смИзносу подземных конструкций зданий способствовали и такие факторы, как неуправляемый рост культурного слоя, высокий уровень грунтовых вод и силы морозного пучения грунтов, вибрации, вызванные транспортными нагрузками, строительством, промышленностью.Первые 100-120 лет со дня основания города фундаменты «казенных» зданий строились особенно тщательно. В траншеи, окопанные под ленточные фундаменты стен несущих, стен забивались деревянные сваи, по верх которых выполнялась кладка фундаментов. Именно так были построены фундаменты стен Петропавловской крепости, Петропавловского собора, Ростральных колонн, Александровской колонны, Исаакиевского собора, многих других. Некоторые здания (пример-Зимний дворец, Новый Эрмитаж) были построены на сплошных плитах…

http://www.rips.ru/analit.phtm…

По поводу Исаакиевского собора до сих пор публикуются всевозможные вымыслы с «недоумениями». Поэтому я привожу описание его фундамента из книги 1869 года издания

из которой ниже ещё будут цитаты :о) https://нэб.рф/catalog/00…

Попутно сообщу всем, кто ещё не в курсе, что строительные чертежи начала XIX века (то есть времени строительства Исаакиевского собора и сооружения Александровской колонны) значительно отличались от чертежей нашего времени. Поэтому, прежде, чем заявлять, что опубликованное Монферраном в его альбомах не является чертежами, прошу ознакомиться с другими чертежами того же времени. Итак, перед вами чертёж из книги «Практические чертежи по устройству церкви Введения во храм пресвятыя Богородицы в Семеновском полку в. С.-Петербурге, составленные и исполненные архитектором профессором Академии художеств… Константином Тоном» Тон К.А. 1845 г.

Здесь можно узнать, что основание было укреплено (уплотнено) забивкой свай, поверх которых был устроен бутовый ростверк. (вспоминаем Исаакий). На чертеже имеется масштабная линейка, чертёж копра для забивки свай. Сравниваем с чертежом Монферрана. Александровская колонна:

Исаакиевский собор

Попутно можем сравнить и чертежи куполов, сделанные Тоном 

и Монферраном

Ранее, в 1824 году (!!!) была издана книга «Собрание планов, фасадов и профилей для строения каменных церквей с кратким наставлением как о самом производстве строения, так и о вычислении потребных к тому материалов; при чем приложены и объяснительные чертежи важнейших частей зданий, с означением размера оных для практического употребления», которую, я полагаю, будет интересно почитать многим. Ссылочка: https://нэб.рф/catalog/00…

Как видим, и тут на основание и на устройство фундамента обращается внимание. В данной книге мы тоже обнаруживаем такие же чертежи, как и чертежи Монферрана. То есть, когда кому-то из вас захочется вдруг заявить, что чертежей строительства Исаакиевского собора нет, вспомните, что для начала следует познакомиться с тем, какими были чертежи начала и середины XIX века, чтобы не «видеть в книге фигу» :о))).

Читая книгу адъюнкт-профессора Карловича, можно убедиться, что в конце XIX века инженерами в России был накоплен большой опыт строительства сооружений, была разработана методика разсчёта сооружений, способы определения механических характеристик грунтов и строительных материалов. Поэтому, встретив чертёж фундамента памятника Александру II, я поняла, что о его сооружении нужно писать отдельно.

Разсказывает архитектор памятника Н.Султанов:

«Во исполнение Высочайшего повеления, с 20-го июня 1890 года Комитет приступил к устройству временных сооружений по постройке памятника и к земляным работам на месте будущего фундамента. Начало земляных работ, как мы уже говорили, обнаружило присутствие фундаментов древних зданий, а также остатков старинных кладбищ. Обстоятельство это тотчас же заставило заменить обычные земляные работы правильными археологическими раскопками, что дало возможность приобрести множество драгоценных остатков старины. Раскопки продолжались всё лето 1890 года, причём выемка земли была произведена до глубины 2-х сажень, то есть до подошвы древних фундаментов. Площадь, занятая раскопками, была длиною около 60 и шириною около 20 саж., или, приблизительно, 1.200 квадр. сажень…»

Немного по истории о сносе зданий Кремля и приказов, остатки которых были найдены на месте строительства памятника Александру II.

Бартенев «Большой Кремлевский дворец, дворцовые церкви и придворные соборы» https://нэб.рф/catalog/00…

Весною 1891 года земляные работы были возобновлены и продолжались до августа, и произведены сперва до уровня горизонта нижнего Кремлевского сада, а после зимнего перерыва, к началу весны 1892 года — доведены до горизонта, лежащего на 4 аршина ниже уровня Кремлевского сада, причем был найден материк, вполне надежный и пригодный для основания фундамента боковых частей. памятника. Эта продолжительность земляных работ обусловливалась тем обстоятельством, что нужно было вынуть земли более б,5 тыс. куб. сажень и сложить ее на верху горы, следовательно поднимая ее на высоту 8 сажень.»

Чем более углублялась выемка грунта, тем яснее становилось, что необходимо дорабатывать проект памятника, ибо «… выяснилось, что если поставить памятник так, как он показан на генеральном плане, представленном вместе с моделью на Высочайшее утверждение в мае 1890 года, то на хорошем грунте будет стоять лишь задняя стена памятника, средняя же часть (фундамент под сенью) будет стоять на нём лишь наполовину, а передняя стена памятника, ближайшая к реке, придётся на наносном, никуда негодном грунте, и потребует очень глубокого и сложного фундамента, крайне дорого стоящего. Всё это требовало Высочайшего одобрения или разрешения…«

Когда были готовы эскизы статуи, императору для разсмотрения были представлены вместе с ними и видоизменённая модель, и разрезы памятника и грунта. Императора уведомили о затруднениях, и он, подробно всё разсмотрев, разрешить соизволил: ≪дабы все стены памятника стояли на хорошемъ материке , вдвинуть его въ глубь горы на четыре сажени, а получающіяся при этомъ лишнія части откоса горы срезать и съ боковъ закруглить≫. Таким образом возникшие недоразумения были разрешены, и можно стало приступать к дальнейшему производству работ. Утверждённый эскиз статуи и видоизменённая модель памятника все время его строительства хранились в конторе постройки, a разборки конторы были переданы на временное хранение в Исторический Музей.

«Памятник Александра Ивановича II как по условиям своего проектирования, так и по своей значительной высоте — тридцать одна сажень от подошвы кессона до вершины орла—представляет собой очень сложное сооружение. В нём выделяются совершенно определённо три составные части:1) Основание и фундаменты.2) Подножие памятника или терраса, и3) Верхнее строение, т. е. Галлереи, входы и средняя сень.Для большей ясности мы рассмотрим каждую часть в отдельности а) Основание и фундаменты.К концу августа 1891 года выемка земли была доведена до уровня нижнего Кремлёвского сада и на этом остановлена. Дальше продолжать было нельзя, ибо, в виду наступающего осеннего времени, фундаменты начинать было поздно, а, — как мы уже говорили — для весенних вод надо было оставить свободный сток. Если бы дно выемки было ниже Кремлёвского сада, то весенние воды заполнили бы её и разрыхлили материк, что могло вызвать безполезное углубление выемки. Кроме того нужно было произвести бурение для окончательного выбора системы основания.

(цитаты из книги Карловича)

Фундамент памятника мог быть расположен двояко: или большими уступами, соответствующими скату; или на одной горизонтальной площади, врезывающейся внутрь горы.Первое устройство было бы гораздо дешевле, второе — несравненно надёжнее. Кроме того, изучение фундаментов открытых древних зданий показало нижеследующее: все поперечные стены, перпендикулярные к гребню горы, были разорваны поперёк, а крайняя к гребню продольная стена имела отклонение верхним концом внаружу. Всё это показывало, что составные части горы не выдерживали груза даже сравнительно невысоких зданий и сползали вниз под их давлением. Эти наблюдения выяснили ещё осенью 1890 года, то есть тотчас же после археологических раскопок, что уступчивое положение фундаментов было немыслимо и дали решимость производителям работ вести на следующий год выемку до уровня нижнего сада, с целью расположить фундамент всех частей на одном горизонте, независимо от выбора основания. Когда в августе 1891 года открылось дно выемки, то оно представилось довольно разнообразным по своему составу: вся южная часть, обращённая к подножию ската горы, состояла из насыщенной земли, местами совершенно чёрной; другая половина, обращённая внутрь горы, представляла собой песок преимущественно жёлтый, а местами белый или красный. Было очевидно, что обосновать на этой поверхности подошву фундамента стало невозможным, так как при этом добрая половина сооружения приходилась бы на наносном сильно сжимаемом грунте. Кроме того, разнородный состав нижней поверхности выемки превращал в совершенную загадку ответ на самый важный вопрос: какие слои грунта лежат ниже этой поверхности?

Единственным способом решения этого вопроса являлось производство бурения, которое и было поручено, согласно выбору производителей работ и приглашению Комитета — инженеру Н. И. Зимину. Буровые скважины были заложены в девяти местах: четыре по углам площади будущего памятника, одна посредине и четыре по концам двух взаимно-перпендикулярных диаметров. Таким образом скважины №1, 2 и 3 приходились по южной стороне памятника; №4, 5 и 6 по средней поперечной оси его и №7,8,9 в северной его части. Бурение дало следующие итоги, расположенные по скважинам

Все эти скважины были доведены до уровня, лежащего ниже горизонта Москвы реки на 0,565 сажени и на 7.2 от верхнего края выемки. Соединённые в три профиля итоги бурения дали ясную картину нижележащих слоёв грунта. В общем, как видно из черт.147-149) они представляют из себя следующее наслоение:1) Внизу горный известняк, почти горизонтальный в левом профиле, приподнятый в северном конце в среднем проиле и поднимающийся в южном конце в правом профиле (VII).2) Над ним толстый слой белой глины с уровнем нижних, более сильных грунтовых вод (VI-V).3) Над нею сравнительно нетолстая прослойка красной глины (IV).4) Над всем этим очень толстый слой разнородного песка с уровнем более слабых верхних грунтовых вод (I-III).

Поверхность песка влево от средней буровой скважины была горизонтальна, а вправо от неё быстро понижалась к низу, вероятно следуя прежнему естественному уклону холма к реке; над этой наклонною частью лежал чёрный насыпной слой земли, образовавшийся очевидно путём исторического наслоения. Таким образом половина сооружения приходилась на наносном грунте. Во избежание этого неприятного исторического условия необходимо было передвинуть его дальше, в глубь горы, с тем, чтобы подошва фундаментов его наружных стен приходилась на песчаном материке, на что, как мы уже говорили, последовало Высочайшее соизволение.»

(продолжение будет)

Начало темы:

https://cont.ws/post/396673

https://cont.ws/post/398123


Смотрите также