Содержание, карта.

Массив грунта расположенный под фундаментом и воспринимающий нагрузку от здания


Массив грунта расположенный под фундаментом и воспринимающий нагрузку от здания

ЛЕКЦИЯ №7

План лекции.

1. Основания фундаментов и их характеристика.

1.1. Работа грунта под нагрузкой.

1.2. Естественные основания. Виды грунтов и их важнейшие характеристики.

1.3. Искусственные основания.

2. Фундаменты малоэтажных жилых зданий.

2.1. Классификация фундаментов

2.2. Конструктивные решения фундаментов.

1. Основания фундаментов и их характеристика.1.1. Работа грунта под нагрузкой

Грунты – это геологические породы, залегающие в верхних слоях земной коры, состоящие из твердых частиц (зерен) разной крупности (скелета грунта) и пор, заполненных или воздухом полностью, либо частично водой. А грунт, который находится под фундаментом в напряженном состоянии от действия нагрузки от здания, называется основанием фундамента.

Основание фундамента представляет собой массив грунта, расположенный под фундаментом и непосредственно воспринимающий через него нагрузки от здания или сооружения.

Эти нагрузки вызывают в основании напряженное состояние (рис.7.1), которое при достижении определенного уровня может привести к деформациям, как самого основания, так и фундамента.

Вследствие давления, предаваемого зданием на основание, грунты под фундаментом испытывают значительные сжимающие усилия. Под действием этих усилий грунты равномерно уплотняются. Такие равномерные деформации называют осадкой грунта, которая вызывает осадку фундаментов.

Неравномерные деформации грунта, происходящие в результате уплотнения и, как правило, коренного изменения структуры грунта под воздействием внешних нагрузок, собственной массы грунта и других факторов (замачивания просадочного грунта, подтаивание линз льда в грунте и т.д.), называют просадками. Они могут вызвать повороты фундаментов и т.п. вплоть до разрушения. Просадки оснований недопустимы.

Для того чтобы осадки не оказали опасных воздействий на работающие под нагрузкой конструкции, а также не повлияли на условия эксплуатации зданий, установлены предельные величины деформаций основания и напряжений в грунте, возникающих под подошвой фундаментов.

1.2. Естественные основания. Виды грунтов и их важнейшие характеристики.

Если грунты неподвижны и способны воспринимать нагрузку без предварительного усиления, то они могут быть использованы в качестве естественных оснований.

Качество естественного основания зависит от многих факторов, однако в первую очередь, его определяет вид грунта, его влажность, уровень грунтовых вод и условия промерзания.

Естественные основания – это грунты, которые в природном состоянии имеют достаточную несущую способность, небольшую и равномерную сжимаемость, не превышающую допустимые значения.

По своему строению грунты состоят из частиц, удерживаемых от взаимного смещения различным образом: жесткой связью между зернами (спаянностью) – в сцементированных грунтах, постоянно сохраняющих свою структуру; силой трения – в сыпучих грунтах; силой сцепления – в связных грунтах.

Грунты, используемые в качестве оснований зданий и сооружений, подразделяют в зависимости от геологических характеристик на скальные и нескальные.

К скальным грунтам относятся: изверженные, метаморфические и осадочные породы с жесткими связями между зернами (спаянные и сцементированные), залегающие в виде сплошного или трещиноватого массива. К таким породам относят, например, граниты, базальты, песчаники, известняки. Под нагрузкой от зданий и сооружений указанные породы не сжимаются и являются наиболее прочным естественным основанием.

К нескальным грунтам относятся крупнообломочные, песчаные и глинистые.

Крупнообломочные грунты по своей структуре (зерновому составу) подразделяются на щебенистые (вес частиц крупнее 10 мм составляет более половины) и дресвяные (вес частиц размером 2 – 10 мм составляет более 50 %). Если в этих грунтах преобладают окатанные частицы, они соответственно получают названия галечникового или гравийного.

Пески в сухом состоянии представляют в своей массе сыпучий грунт. По крупности частиц различают пески: гравелистые, крупные, средней крупности, мелкие и пылеватые с соответствующим соотношением частиц от 2 мм до 0,05 мм в % от веса воздушно-сухого грунта. Песчаные грунты из гравелистых, крупных и средней крупности песков мало сжимаемы и при достаточной мощности слоя служат прочным и устойчивым основанием зданий и сооружений.

Глинистые грунты относятся к категории связных грунтов с размерами плоских частиц, не превышающими 0,005 мм, и толщиной менее 0,001 мм. Глинистые частицы скреплены силами внутреннего сцепления, величина которого зависит от влажности грунта. Глинистые грунты пластичны, т.е. способны при увлажнении переходить из твердого состояния в пластическое и даже в текучее. Глинистые грунты, находящиеся в твердом сухом состоянии, служат прочным основанием.

К глинистым грунтам относятся также суглинки и супеси, содержащие наряду с глинистыми частицами примеси песка. Содержание этих примесей характеризуется так называемым «числом пластичности». Для супесей это значение составляет от 0,01 до 0,07, для суглинков – от 0,07 до 0,17.

При наличии в глинистых грунтах до 15 – 25 % (по весу частиц крупнее 2 мм к указанным наименованиям должны прибавляться термины «с галькой» («со щебнем») или «с гравием» («с дресвой»); если же содержание частиц составляет 25 – 50 % (по весу) прибавляются термины «галечниковый» («щебенистый»), «гравелистый» («дресвянистый»). При наличии частиц крупнее 2 мм более 50 % (по весу) грунты относятся к крупнообломочным.

В зависимости от степени влажности или степени заполнения пор водой различают грунты маловлажные, влажные и насыщенные водой. Крупнообломочные и песчаные грунты с крупностью частиц выше средней при увлажнении мало сжимаемы и могут служить устойчивым основанием. Увлажнение мелкозернистых песчаных грунтов снижает их несущую способность тем больше, чем меньше размеры частиц грунта. Особенно сильно влияет на снижение несущей способности грунта увлажнение пылеватых песков с глинистыми и илистыми примесями. Такие грунты в водонасыщенном состоянии становятся текучими и называются плывунами. Возведение зданий на таких грунтах требует дополнительных мер по усилению основания.

В строительной практике встречаются насыпные грунты – искусственные насыпи, образованные в результате культурной и производственной деятельности человека. Такие грунты формируются при засыпке оврагов, высохших водоемов, на месте свалок и отходов производства и т.п.

Плотность насыпных грунтов часто зависит от характера подстилающего слоя и состава насыпи (наличие мусора, шлаков и др.). Вопрос об использовании насыпных грунтов в качестве основания для зданий и сооружений рассматривается в каждом отдельном случае в зависимости от характера грунта и возраста насыпи. Так, например, песчаные насыпи, в своей основе содержащие песок, самоуплотняются через 2-3 года, а глинистые – через 5 – 7 лет, после чего они могут быть использованы в качестве естественного основания. Несущая способность глинистых грунтов при их увлажнении значительно снижается. При замерзании влажных глинистых грунтов основания происходит замерзание воды в порах: происходит так называемое «пучение», которое часто является причиной деформаций фундаментов и зданий. Поэтому глубина заложения фундаментов от уровня земли на глинистых грунтах должна быть, как правило, ниже глубины зимнего промерзания на 15 – 20 см.

Глинистые грунты (например, лессы и лессовидные), обладающие в природном состоянии видными невооруженным глазом крупными порами (макропорами), называют макропористыми грунтами. При увлажнении такие грунты из-за содержания в них растворимых в воде извести, гипса и других солей теряют связность, быстро намокают и при этом уплотняются, образуя просадки. Указанные грунты называют просадочными и для обеспечения необходимой прочности и устойчивости возводимых на таких грунтах зданий и сооружений должны выполняться специальные мероприятия по укреплению грунтов основания и по защите их от увлажнения.

Грунтовые воды образуются в результате проникновения в грунт атмосферных осадков. Дойдя до водонепроницаемого слоя («водоупора»), например слоя глины, вода стекает по его склону, просачиваясь через водопроницаемые слои (крупнозернистые и т.п.). Уровень дренируемой воды зависит от близости водоупора к поверхности, от сезонных колебаний уровней воды в водоемах местности и т.п. Этот уровень, называемый уровнем грунтовых вод, может изменяться еще и от проникновения воды сверху – так называемой верховодки при таянии снегов, дождях и при наличии прослоек глинистых грунтов, задерживающих движение воды.

В зависимости от гидрогеологических условий, слои грунта могут быть в различной степени насыщены грунтовой водой. Крупнозернистые грунты содержат ее в том случае, если ниже них залегают водоупорные слои. Мелкозернистые грунты могут содержать грунтовую воду частично или полностью, а глинистые грунты в силу своей большой влагоемкости чаще всего имеют только капиллярную (связную) воду.

Грунтовые воды, содержащие растворенные примеси солей и других веществ, разрушающих материал фундаментов, называют агрессивными.

Для защиты от агрессивных грунтовых вод создаются специальные конструкции, способные работать в агрессивной среде и защищающие фундаменты от разрушения (СНиП 3.02.01-83).

Грунты, имеющие в своем составе лед, называют мерзлыми. Грунты, промерзающие только в течение одного зимнего времени, называются сезонно-мерзлыми; сохраняющие мерзлое состояние непрерывно в продолжении долгих лет – вечномерзлыми. Сезонно-мерзлые грунты в зимнее время под воздействием нулевой или отрицательной температуры района строительства промерзают на некоторую глубину.

Промерзание некоторых из этих грунтов может вызвать их пучение. Грунты, в которых присутствует значительное количество глины (супеси, суглинки и глины), называют вспучивающимися при замерзании. Остальные грунты (пески, гравелистые и др.) составляют группу невспучивающихся при замерзании. Силы пучения всегда направлены снизу вверх, в процессе замерзания или оттаивания происходит смещение отдельных участков поверхности относительно друг друга. По степени пучения грунты разделяются на сильно пучинистые, пучинистые и непучинистые. Более всего пучинят глинистые грунты. При насыщении водой в небольшой степени пучинят мелкие пески. Крупнообломочные и песчаные грунты крупных фракций не пучинят даже в насыщенном водой состоянии. В скальных породах и крупнообломочных грунтах деформации грунта, развивающиеся при замерзании, незначительны либо вовсе отсутствуют.

Вопросы.

1. Понятие об основаниях и требования к ним.

2. Фундаменты и их конструктивные решения.

1. Понятие об основаниях и требования к ним.

Геологические породы, залегающие в верхних слоях земной коры и исполь­зуемые в строительных целях, называют грунтами. Грунты представляют собой скопление частиц различной величины, между которыми находятся поры (пу­стоты). Прочность сцепления между ча­стицами грунта во много раз меньше прочности самих частиц. Эти частицы образуют скелет грунта.

Основанием называют массив грунта, расположенный под фундаментом и воспринимающий нагрузку от здания. Основания бывают двух видов: есте­ственные и искусственные.

Естественным основанием назы­вают грунт, залегающий под фундамен­том и способный в своем природном состоянии выдержать нагрузку от возведен­ного здания.

Искусственным основанием на­зывают искусственно уплотненный или упрочненный грунт, который в природ­ном состоянии не обладает достаточной несущей способностью по глубине зало­жения фундамента.

Нагрузка, передаваемая фундаментом, вызывает в грунте основания напряжен­ное состояние и деформирует его. На рис. 4.1 показана примерная форма на­пряженного объема грунта. Как видно из рисунка, глубина и ширина напряженной зоны значительно превышают ширину фундамента.

По мере углубления ниже фундамента область распространения напряжений увеличивается до определенного значе­ния, а их абсолютная величина снижает­ся, и постепенно область распростране­ния напряжений уменьшается.

Рис. 6.1. Напряженная зона грунта основания под

подошвой фундамента:

Ь — ширина фундамента, Р — нагрузка от здания,

передаваемая фундаментом на основание

Действующие нагрузки деформируют основания, вызывая осадку здания. В со­ответствии с изложенным грунты, соста­вляющие основание, должны отвечать следующим требованиям: обладать до­статочной несущей способностью, а так­же малой и равномерной сжимаемостью (большие и неравномерные осадки здания могут привести к его повреждению и да­же разрушению); не быть пучинистыми, т. е. иметь свойство увеличения объема при замерзании влаги в порах грунта (в соответствии с этим требованием выби­рают глубину заложения фундамента, ко­торая должна быть согласована с глуби­ной промерзания грунта в районе строи­тельства); не размываться и не раство­ряться грунтовыми водами, что также приводит к снижению прочности основа­ния и появлению непредусмотренных оса­док здания; не допускать просадок и оползней.

Просадки могут произойти при недо­статочной мощности слоя грунта, приня­того за основание, если под ним распола­гается грунт, имеющий меньшую прочность (более слабый грунт). Оползни грунта могут возникнуть при наклонном расположении пластов грунта, ограни­ченных крутым рельефом местности.

Главное же внимание при проектирова­нии уделяется вопросу обеспечения рав­номерности осадок. При этом необходимо, прежде всего, учитывать, что нагрузка от здания может вызвать разрушение ос­нования при его недостаточной несущей способности. С другой стороны, основа­ние может и не разрушиться, но осадка здания окажется столь неравномерной, что в стенах здания появятся трещины, а в конструкциях возникнут усилия, могу­щие привести к аварийному состоянию всего здания или его части.

Грунты оснований зданий и сооруже­ний не должны обладать свойством пол­зучести, т. е. способностью к длительной незатухающей деформации под нагруз­кой. Классическим примером этого является почти 800-летняя осадка Пизанской башни, строившейся более 200 лет (рис. 4.2).

Грунтовые воды оказывают значитель­ное влияние на структуру, физическое со­стояние и механические свойства грунтов, понижая несущую способность основа­ния.

Если же в грунте содержатся легко рас­творимые в воде вещества (например, гипс), возможно выщелачивание его, что влечет за собой увеличение пористости основания и снижение его несущей спо­собности. Для этого в необходимых слу­чаях понижают уровень грунтовых вод. Когда скорость движения грунтовых вод такова, что возможно вымывание частиц мелкозернистых грунтов, необходимо применять меры по защите основания. Для этого устраивают вокруг здания спе­циальное шпунтовое ограждение или дре­наж.

Каковы же основные виды грунтов и их свойства? Грунты разнообразны по своему составу, структуре и характеру за­легания. Принята следующая строитель­ная классификация грунтов:

Скальные — залегают в виде сплошного массива (граниты, кварциты, песчаники и т. д.) или в виде трещиноватого слоя. Они водоустойчивы, несжимаемы и при отсутствии трещин и пустот являются наиболее прочными и надежными основа­ниями. Трещиноватые слои скальных грунтов менее прочны.

Крупнообломочные — несвязные облом­ки скальных пород с преобладанием обломков размером более 2 мм (свыше 50 %). К ним можно отнести гравий, ще­бень, гальку, дресву. Эти грунты являют­ся хорошим основанием, если под ними расположен плотный слой.

Песчаные — состоят из частиц круп­ностью от 0,1 до 2 мм. В зависимости от крупности частиц пески разделяют на гравелистые, крупные, средней крупности, мелкие и пылеватые. Чем крупнее и чище пески, тем большую нагрузку может вы­держать слой основания из него. Сжимае­мость плотного песка невелика, но ско­рость уплотнения под нагрузкой значи­тельна, поэтому осадка сооружений на таких основаниях быстро прекращается. Пески не обладают свойством пластично­сти.

Частицы грунта крупностью от 0,05 до 0,005 мм называют пылеватыми. Если в песке таких частиц от 15 до 50 %, то их относят к категории пылеватых. Когда в грунте пылеватых частиц больше, чем песчаных, грунт называют пылеватым.

Глинистые — связные грунты, состоя­щие из частиц крупностью менее 0,005 мм, имеющих в основном чешуйча­тую форму. В отличие от песков глины имеют тонкие капилляры и большую удельную поверхность соприкосновения между частицами. Так как поры гли­нистых грунтов в большинстве случаев заполнены водой, то при промерзании глины происходит ее пучение. Несущая способность глинистых оснований зави­сит от влажности. Сухая глина может вы­держивать довольно большую нагрузку. Глинистые грунты делятся на глины (с содержанием глинистых частиц более 30%), суглинки (10…30%) и супеси (З…10%).

Лёссовые (макропористые) — глинистые грунты с содержанием большого количе­ства пылеватых частиц и наличием крупных пор (макропор) в виде верти­кальных трубочек, видимых невоору­женным глазом. Эти грунты в сухом со­стоянии обладают достаточной проч­ностью, но при увлажнении способны давать под нагрузкой большие осадки. Они относятся к просадочным грунтам и при возведении на них зданий требуют надлежащей защиты оснований от увлаж­нения. С органическими примесями (рас­тительный грунт, ил, торф, болотный торф) неоднородны по своему составу, рыхлы, обладают значительной сжимае­мостью. В качестве естественных основа­ний под здания непригодны.

Насыпные — образовавшиеся искусст­венно при засыпке оврагов, прудов, мест свалки и т. п. Обладают свойством не­равномерной сжимаемости, и в большин­стве случаев их нельзя использовать в ка­честве естественных оснований под зда­ния. В практике встречаются также намы­вные грунты, образовавшиеся в результа­те очистки рек и озер. Эти грунты называют рефулированными насыпными грунтами. Они являются хорошим осно­ванием для зданий.

Плывуны — образуются мелкими песка­ми с илистыми и глинистыми примесями, насыщенными водой. Они непригодны как естественные основания. Основания должны обеспечивать пространственную жесткость и устойчивость здания, поэто­му нормами предусмотрены допустимые величины осадок здания (80… 150 мм в за­висимости от вида здания).

2. Фундаменты и их конструктивные решения

Фундаменты являются важным конструк­тивным элементом здания, воспринимаю­щим нагрузку от надземных его частей и передающим ее на основание. Фунда­менты должны удовлетворять требова­ниям прочности, устойчивости, долговеч­ности, технологичности устройства и эко­номичности.

Верхняя плоскость фундамента, на ко­торой располагаются надземные части здания, называют поверхностью фунда­мента или обрезом, а нижнюю его пло­скость, непосредственно соприкасающую­ся с основанием, — подошвойфундамен­та.

Расстояние от спланированной поверх­ности грунта до уровня подошвы назы­вают глубиной заложения фундамента, которая должна соответствовать глубине залегания слоя основания. При этом не­обходимо учитывать глубину промерза­ния грунта (рис. 4.4). Если основание со­стоит из влажного мелкозернистого грун­та (песка мелкого или пылеватого, супе­си, суглинка или глины), то подошву фундамента нужно располагать не выше уровня промерзания грунта. На рисунке приведены изолинии нормативных глу­бин промерзания суглинистых грунтов.

Глубина заложения фундаментов под внутренние стены отапливаемых зданий не зависит от глубины промерзания грун­та; ее назначают не менее 0,5 м от уров­ня земли или пола подвала.

В непучинистых грунтах (крупнообло­мочных, а также песках гравелистых, крупных и средней крупности) глубина заложения фундаментов также не зависит от глубины промерзания, однако она должна быть не менее 0,5 м, считая от природного уровня грунта при планиров­ке подсыпкой, и от планировочной от­метки при планировке участка срезкой. По конструктивной схеме фундаменты могут быть: ленточные, располагаемые по всей длине стен или в виде сплошной ленты под рядами колонн (рис. 4.5, а, б); столбчатые, устраиваемые под отдельно стоящие опоры (колонны или столбы), а в ряде случаев и под стены (рис. 4.5, в, г); сплошные, представляющие собой монолитную плиту под всей площадью здания или его частью и применяемые при особо больших нагрузках на стены или отдельные опоры, а также

недоста­точно прочных грунтах в основании (рис. 4.5,д, г); свайные в виде отдельных по­

груженных в грунт стержней для переда­чи через них на основание нагрузок от здания (рис. 4.5, ж).

По характеру работы под действием нагрузки фундаменты различают жест­кие, материал которых работает преиму­щественно на сжатие и в которых не воз­никают деформации изгиба, и гибкие, работающие преимущественно на изгиб.

Для устройства жестких фундаментов применяют кладку из природного камня неправильной формы (бутового камня или бутовой плиты), бутобетона и бето­на. Для гибких фундаментов используют в основном железобетон.

Ленточные фундаменты. По очертанию в профиле ленточный фунда­мент под стену в простейшем случае представляет собой прямоугольник (рис. 4.6, а). Его ширину устанавливают немно­го больше толщины стены, предусматри­вая с каждой стороны небольшие уступы по 50… 150 мм. Однако прямоугольное се­чение .фундамента на высоте допустимо лишь при небольших нагрузках на фунда­мент и достаточно высокой несущей спо­собности грунта.

Теоретической формой сечения фунда­мента в этом случае является трапеция (рис. 4.6,6), где угол а определяет рас­пространение давления и принимается для бутовой кладки и бутобетона от 27 до 33°, для бетона — 45°. Устройство та­ких трапецеидальных фундаментов связа­но с определенными трудозатратами, по­этому практически такие фундаменты в зависимости от расчетной ширины по­дошвы выполняют прямоугольными или ступенчатой формы (рис. 4.6, в, г) с со­блюдением правила, чтобы габариты фундамента не выходили за пределы его теоретической формы. Размеры ступеней по ширине (а) принимают 20…25 см, а по высоте (с) — соответственно 40…50 см По способу устройства ленточные фун­даменты бывают монолитные и сборные. Монолитные фундаменты устраивают бутовые, бутобетонные, бетонные и железобетонные. На рис. 4.7 показан ленточный фундамент из бутового камня и бутобе­тона. Ширина бутовых фундаментов дол­жна быть не менее 0,6 м для кладки из рваного бута и 0,5 м — из бутовой плиты. Высота ступеней в бутовых фундаментах составляет обычно около 0,5 м, ши­рина — от 0,15 до 0,25 м. Устройство мо­нолитных бутобетонных, бетонных и же­лезобетонных фундаментов требует про­ведения опалубочных работ. Кладку бу­товых фундаментов производят на слож­ном или цементном растворе с обяза­тельной перевязкой (несовпадением) вер­тикальных швов (промежутков между камнями, заполняемых раствором).

Бутобетонные фундаменты состоят из бетона класса В5 с включением в его тол­щу (в целях экономии бетона) отдельных кусков бутового камня. Размеры камней должны быть не более 1/3 ширины фунда­мента.

Монолитные бутовые фундаменты не отвечают требованиям современного ин­дустриального строительства, а для их устройства трудно механизировать работы Бутовые и бутобетонные фунда­менты весьма трудоемкие при возведе­нии, поэтому их применяют в основном в районах, где бутовый камень является местным материалом.

Более эффективными являются бе­тонные и железобетонные фундаменты из сборных элементов заводского изготовле­ния (рис. 4.8), которые в настоящее время имеют наибольшее распространение. При их устройстве трудовые затраты на строительстве уменьшаются вдвое. Их можно возводить и в зимних условиях без устройства обогрева.

Сборные ленточные фундаменты под стены состоят из фундаментных блоков-подушек и стеновых фундаментных бло­ков. Фундаментные подушки укладывают непосредственно на основание при пес­чаных грунтах или на песчаную подго­товку толщиной 100… 150 мм, которая должна быть тщательно утрамбована.

Фундаментные бетонные блоки укладывают на растворе с обязательной перевязкой вертикальных швов, толщину которых принимают равной 20 мм (рис. 4.8, 4.9). Вертикальные колодцы, обра­зующиеся торцами блоков, тщательно заполняют раствором. Связь между блока­ми продольных и угловых стен

обеспечи­вается перевязкой блоков и закладкой в горизонтальные швы арматурных сеток из стали диаметром 6…10 мм (рис. 4.10).

Блоки-подушки изготовляют толщиной 300 и 400 мм и шириной от 1000 до 2800 мм, а блоки-стенки — шириной 300, 400, 500 и 600 мм, высотой 580 и длиной от 780 до 2380 мм.

В практике строительства применяют также сборные фундаментные блоки, имеющие толщину 380 мм при толщине надземных стен 380, 510 и 640 мм (рис. 4.11, а). При такой конструкции проч­ность материала фундамента использует­ся полнее и в результате получается эко­номия бетона. Этой же цели соответ­ствует устройство так называемых пре­рывистых фундаментов (рис. 4.11,6), в которых блоки-подушки укладывают на расстоянии 0,3…0,5 м друг от друга. Про­межутки между ними заполняют песком.

Строительство крупнопанельных зда­ний и зданий из объемных блоков потре­бовало разработки новых конструк­тивных решений фундаментов. На рис. 4.11, в показан фундамент из крупнораз­мерных элементов для жилого дома с по­перечными несущими стенами и подва­лом. Фундамент состоит из железобетон­ной плиты толщиной 300 мм и длиной 3,5 м и установленных на них панелей, представляющих собой сквозные безра­скосные железобетонные фермы, имею­щие толщину 240 мм и высоту, равную высоте подвального помещения. Соеди­няются элементы между собой с по­мощью сварки закладных стальных дета­лей.

Столбчатые фундаменты.

При небольших нагрузках на фундамент, когда давление на основание меньше нор­мативного, непрерывные ленточные фун­даменты под стены малоэтажных домов без подвалов целесообразно заменять столбчатыми. Фундаментные столбы мо­гут быть бутовыми, бутобетонными, бе­тонными и железобетонными (рис. 4.13, а). Расстояние между осями фунда­ментных столбов принимают 2,5…3,0 м, а если грунты прочные, то это расстояние может составлять 6 м. Столбы распола­гают обязательно под углами здания, в местах пересечения и примыкания стен и под простенками. Сечение столбчатых фундаментов во всех случаях должно быть не менее: бутовых и бутобетонных — 0,6 х 0,6 м; бетонных — 0,4 х 0,4 м.

Столбчатые фундаменты под стены возводят также в зданиях большой этаж­ности при значительной глубине заложения фундаментов (4…5 м), когда устрой­ство ленточного фундамента нецелесо­образно из-за большого расхода строи­тельных материалов. Столбы перекры­вают железобетонными фундаментными балками. Для предохранения их от сил пучения грунта, а также для свободной их осадки (при осадке здания) под ними делают песчаную подсыпку толщиной

Дата добавления: 2016-01-18; просмотров: 681;

ПОСМОТРЕТЬ ЕЩЕ:

Строительство Основанием называется массив грунта, расположенный под фундаментом и воспринимающий через них нагрузку от здания или сооружения. просмотров — 35

ОСНОВАНИЯ и ФУНДАМЕНТЫ

Лекция №6

План лекции:

1. Основания.

1.1 Естественные основания.

1.2 Искусственные основания.

2. Фундаменты.

2.1 Общие понятия.

2.2 Классификация.

2.3 Конструктивные решения.

3. Технико-экономические анализ фундаментов.

1. Основания.

1.1. Естественные основания

В природном состоянии имеющие достаточную несущую способность для восприятия нагрузки от здания. Качество естественных оснований зависит от влажности грунта͵ уровня грунтовых вод и условий промерзания.

Действующие силы при расчете фундамента на основания зданий и сооружений представлена на рис. 1.

Грунты подразделяются на:

Скальные –залегают в виде сильного массива (граниты, кварциты, песчаники и др.), водоустойчивы, несжимаемы. При отсутствии трещин и пустот являются наиболее прочными и надежными основаниями.

Крупнообломочные – несвязанные обломки пород размером > 2 мм (щебень, галька, гравий и др.). Хорошие основания, если подстилаются плотными грунтами и не подвержены размыванию.

Песчаные –из округленных частиц диаметром 0.1 – 2мм. Бывают крупные, средней крупности, мелкие и пылеватые. Чем крупнее зерна и плотнее песчаный грунт, тем выше несущая способность и меньше осадка.

Глинистые – связанные породы с очень маленькими частицами (

Основанием называется массив грунта, расположенный под фундаментом и воспринимающий через них нагрузку от здания или сооружения

ОСНОВАНИЯ и ФУНДАМЕНТЫ

Лекция №6

План лекции:

1. Основания.

1.1 Естественные основания.

1.2 Искусственные основания.

2. Фундаменты.

2.1 Общие понятия.

2.2 Классификация.

2.3 Конструктивные решения.

3. Технико-экономические анализ фундаментов.

1. Основания.

1.1. Естественные основания

В природном состоянии имеющие достаточную несущую способность для восприятия нагрузки от здания. Качество естественных оснований зависит от влажности грунта, уровня грунтовых вод и условий промерзания.

Действующие силы при расчете фундамента на основания зданий и сооружений представлена на рис. 1.

Грунты подразделяются на:

Скальные –залегают в виде сильного массива (граниты, кварциты, песчаники и др.), водоустойчивы, несжимаемы. При отсутствии трещин и пустот являются наиболее прочными и надежными основаниями.

Крупнообломочные – несвязанные обломки пород размером > 2 мм (щебень, галька, гравий и др.). Хорошие основания, если подстилаются плотными грунтами и не подвержены размыванию.

Песчаные –из округленных частиц диаметром 0.1 – 2мм. Бывают крупные, средней крупности, мелкие и пылеватые. Чем крупнее зерна и плотнее песчаный грунт, тем выше несущая способность и меньше осадка.

Глинистые – связанные породы с очень маленькими частицами (

Основания и фундаменты

ЛЕКЦИЯ №7

План лекции.

1. Основания фундаментов и их характеристика.

1.1. Работа грунта под нагрузкой.

1.2. Естественные основания. Виды грунтов и их важнейшие характеристики.

1.3. Искусственные основания.

2. Фундаменты малоэтажных жилых зданий.

2.1. Классификация фундаментов

2.2. Конструктивные решения фундаментов.

1. Основания фундаментов и их характеристика.

1.1. Работа грунта под нагрузкой

Грунты – это геологические породы, залегающие в верхних слоях земной коры, состоящие из твердых частиц (зерен) разной крупности (скелета грунта) и пор, заполненных или воздухом полностью, либо частично водой. А грунт, который находится под фундаментом в напряженном состоянии от действия нагрузки от здания, называется основанием фундамента.

Основание фундамента представляет собой массив грунта, расположенный под фундаментом и непосредственно воспринимающий через него нагрузки от здания или сооружения.

Эти нагрузки вызывают в основании напряженное состояние (рис.7.1), которое при достижении определенного уровня может привести к деформациям, как самого основания, так и фундамента.

Вследствие давления, предаваемого зданием на основание, грунты под фундаментом испытывают значительные сжимающие усилия. Под действием этих усилий грунты равномерно уплотняются. Такие равномерные деформации называют осадкой грунта, которая вызывает осадку фундаментов.

Неравномерные деформации грунта, происходящие в результате уплотнения и, как правило, коренного изменения структуры грунта под воздействием внешних нагрузок, собственной массы грунта и других факторов (замачивания просадочного грунта, подтаивание линз льда в грунте и т.д.), называют просадками. Они могут вызвать повороты фундаментов и т.п. вплоть до разрушения. Просадки оснований недопустимы.

Для того чтобы осадки не оказали опасных воздействий на работающие под нагрузкой конструкции, а также не повлияли на условия эксплуатации зданий, установлены предельные величины деформаций основания и напряжений в грунте, возникающих под подошвой фундаментов.

1.2. Естественные основания. Виды грунтов и их важнейшие характеристики.

Если грунты неподвижны и способны воспринимать нагрузку без предварительного усиления, то они могут быть использованы в качестве естественных оснований.

Качество естественного основания зависит от многих факторов, однако в первую очередь, его определяет вид грунта, его влажность, уровень грунтовых вод и условия промерзания.

Естественные основания – это грунты, которые в природном состоянии имеют достаточную несущую способность, небольшую и равномерную сжимаемость, не превышающую допустимые значения.

По своему строению грунты состоят из частиц, удерживаемых от взаимного смещения различным образом: жесткой связью между зернами (спаянностью) – в сцементированных грунтах, постоянно сохраняющих свою структуру; силой трения – в сыпучих грунтах; силой сцепления – в связных грунтах.

Грунты, используемые в качестве оснований зданий и сооружений, подразделяют в зависимости от геологических характеристик на скальные и нескальные.

К скальным грунтам относятся: изверженные, метаморфические и осадочные породы с жесткими связями между зернами (спаянные и сцементированные), залегающие в виде сплошного или трещиноватого массива. К таким породам относят, например, граниты, базальты, песчаники, известняки. Под нагрузкой от зданий и сооружений указанные породы не сжимаются и являются наиболее прочным естественным основанием.

К нескальным грунтам относятся крупнообломочные, песчаные и глинистые.

Крупнообломочные грунты по своей структуре (зерновому составу) подразделяются на щебенистые (вес частиц крупнее 10 мм составляет более половины) и дресвяные (вес частиц размером 2 – 10 мм составляет более 50 %). Если в этих грунтах преобладают окатанные частицы, они соответственно получают названия галечникового или гравийного.

Пески в сухом состоянии представляют в своей массе сыпучий грунт. По крупности частиц различают пески: гравелистые, крупные, средней крупности, мелкие и пылеватые с соответствующим соотношением частиц от 2 мм до 0,05 мм в % от веса воздушно-сухого грунта. Песчаные грунты из гравелистых, крупных и средней крупности песков мало сжимаемы и при достаточной мощности слоя служат прочным и устойчивым основанием зданий и сооружений.

Глинистые грунты относятся к категории связных грунтов с размерами плоских частиц, не превышающими 0,005 мм, и толщиной менее 0,001 мм. Глинистые частицы скреплены силами внутреннего сцепления, величина которого зависит от влажности грунта. Глинистые грунты пластичны, т.е. способны при увлажнении переходить из твердого состояния в пластическое и даже в текучее. Глинистые грунты, находящиеся в твердом сухом состоянии, служат прочным основанием.

К глинистым грунтам относятся также суглинки и супеси, содержащие наряду с глинистыми частицами примеси песка. Содержание этих примесей характеризуется так называемым «числом пластичности». Для супесей это значение составляет от 0,01 до 0,07, для суглинков – от 0,07 до 0,17.

При наличии в глинистых грунтах до 15 – 25 % (по весу частиц крупнее 2 мм к указанным наименованиям должны прибавляться термины «с галькой» («со щебнем») или «с гравием» («с дресвой»); если же содержание частиц составляет 25 – 50 % (по весу) прибавляются термины «галечниковый» («щебенистый»), «гравелистый» («дресвянистый»). При наличии частиц крупнее 2 мм более 50 % (по весу) грунты относятся к крупнообломочным.

В зависимости от степени влажности или степени заполнения пор водой различают грунты маловлажные, влажные и насыщенные водой. Крупнообломочные и песчаные грунты с крупностью частиц выше средней при увлажнении мало сжимаемы и могут служить устойчивым основанием. Увлажнение мелкозернистых песчаных грунтов снижает их несущую способность тем больше, чем меньше размеры частиц грунта. Особенно сильно влияет на снижение несущей способности грунта увлажнение пылеватых песков с глинистыми и илистыми примесями. Такие грунты в водонасыщенном состоянии становятся текучими и называются плывунами. Возведение зданий на таких грунтах требует дополнительных мер по усилению основания.

В строительной практике встречаются насыпные грунты – искусственные насыпи, образованные в результате культурной и производственной деятельности человека. Такие грунты формируются при засыпке оврагов, высохших водоемов, на месте свалок и отходов производства и т.п.

Плотность насыпных грунтов часто зависит от характера подстилающего слоя и состава насыпи (наличие мусора, шлаков и др.). Вопрос об использовании насыпных грунтов в качестве основания для зданий и сооружений рассматривается в каждом отдельном случае в зависимости от характера грунта и возраста насыпи. Так, например, песчаные насыпи, в своей основе содержащие песок, самоуплотняются через 2-3 года, а глинистые – через 5 – 7 лет, после чего они могут быть использованы в качестве естественного основания. Несущая способность глинистых грунтов при их увлажнении значительно снижается. При замерзании влажных глинистых грунтов основания происходит замерзание воды в порах: происходит так называемое «пучение», которое часто является причиной деформаций фундаментов и зданий. Поэтому глубина заложения фундаментов от уровня земли на глинистых грунтах должна быть, как правило, ниже глубины зимнего промерзания на 15 – 20 см.

Глинистые грунты (например, лессы и лессовидные), обладающие в природном состоянии видными невооруженным глазом крупными порами (макропорами), называют макропористыми грунтами. При увлажнении такие грунты из-за содержания в них растворимых в воде извести, гипса и других солей теряют связность, быстро намокают и при этом уплотняются, образуя просадки. Указанные грунты называют просадочными и для обеспечения необходимой прочности и устойчивости возводимых на таких грунтах зданий и сооружений должны выполняться специальные мероприятия по укреплению грунтов основания и по защите их от увлажнения.

Грунтовые воды образуются в результате проникновения в грунт атмосферных осадков. Дойдя до водонепроницаемого слоя («водоупора»), например слоя глины, вода стекает по его склону, просачиваясь через водопроницаемые слои (крупнозернистые и т.п.). Уровень дренируемой воды зависит от близости водоупора к поверхности, от сезонных колебаний уровней воды в водоемах местности и т.п. Этот уровень, называемый уровнем грунтовых вод, может изменяться еще и от проникновения воды сверху – так называемой верховодки при таянии снегов, дождях и при наличии прослоек глинистых грунтов, задерживающих движение воды.

В зависимости от гидрогеологических условий, слои грунта могут быть в различной степени насыщены грунтовой водой. Крупнозернистые грунты содержат ее в том случае, если ниже них залегают водоупорные слои. Мелкозернистые грунты могут содержать грунтовую воду частично или полностью, а глинистые грунты в силу своей большой влагоемкости чаще всего имеют только капиллярную (связную) воду.

Грунтовые воды, содержащие растворенные примеси солей и других веществ, разрушающих материал фундаментов, называют агрессивными.

Для защиты от агрессивных грунтовых вод создаются специальные конструкции, способные работать в агрессивной среде и защищающие фундаменты от разрушения (СНиП 3.02.01-83).

Грунты, имеющие в своем составе лед, называют мерзлыми. Грунты, промерзающие только в течение одного зимнего времени, называются сезонно-мерзлыми; сохраняющие мерзлое состояние непрерывно в продолжении долгих лет – вечномерзлыми. Сезонно-мерзлые грунты в зимнее время под воздействием нулевой или отрицательной температуры района строительства промерзают на некоторую глубину.

Промерзание некоторых из этих грунтов может вызвать их пучение. Грунты, в которых присутствует значительное количество глины (супеси, суглинки и глины), называют вспучивающимися при замерзании. Остальные грунты (пески, гравелистые и др.) составляют группу невспучивающихся при замерзании. Силы пучения всегда направлены снизу вверх, в процессе замерзания или оттаивания происходит смещение отдельных участков поверхности относительно друг друга. По степени пучения грунты разделяются на сильно пучинистые, пучинистые и непучинистые. Более всего пучинят глинистые грунты. При насыщении водой в небольшой степени пучинят мелкие пески. Крупнообломочные и песчаные грунты крупных фракций не пучинят даже в насыщенном водой состоянии. В скальных породах и крупнообломочных грунтах деформации грунта, развивающиеся при замерзании, незначительны либо вовсе отсутствуют.

1 вопрос

Основания и Фундаменты

1 вопрос: Классификация оснований и их свойства.

Основание - напластование грунтов, воспринимающее давление от сооружения.

Основания зданий и сооружений подразделяются на естественные и искусственные.

Естественные: кварц, полевые шпаты, роговая обманка, слюда.

Искусственные основания выполняются путём выемки грунта и замены его на искусственный. Простейший способ улучшения свойств оснований - устройство песчаной подушки. Схема устройства песчаной подушки

ОСНОВАНИЯ И ФУНДАМЕНТЫ

4.1. Понятие об основаниях и требования к ним

Геологические породы, залегающие в верхних слоях земной коры и исполь­зуемые в строительных целях, называ­ются грунтами. Грунты представляют собой скопление частиц различной ве­личины, между которыми находятся поры (пустоты). Прочность сцепления между частицами грунта во много раз меньше прочности самих частиц. Эти частицы образуют скелет грунта.

Основанием называется массив грунта, расположенный под фундамен­том и воспринимающий нагрузку от здания. Основания бывают двух видов: естественные и искусственные.

Естественным основанием называют грунт, залегающий под фундаментом и способный в своем природном состоянии выдержать нагрузку от возведенного здания.

Искусственным основанием называют искусственно уплотненный или упроч­ненный грунт, который в природном со­стоянии не обладает достаточной несу­щей способностью по глубине заложе­ния фундамента.

Нагрузка, передаваемая фундамен­том, вызывает в грунте основания на­пряженное состояние и деформирует его. На. рис. 4.1 показана примерная форма напряженного объема грунта. Как видно из рисунка, глубина и ши­рина напряженной зоны значительно превосходят ширину фундамента.

По мере углубления ниже фундамен­та область распространения напряже­ний увеличивается до определенного значения, а их абсолютная величина снижается и постепенно область рас­пространения напряжений уменьшает­ся. На глубине более 6 b грунт прак­тически не испытывает напряжений.

Действующие нагрузки деформируют основания, вызывая осадку здания.

В соответствии с изложенным грун­ты, составляющие основание, должны отвечать следующим требованиям: обла­дать достаточной несущей способно­стью, а также малой и равномерной сжимаемостью (большие и неравномер­ные осадки здания могут привести к его повреждению и даже разрушению); не быть пучинистыми, т. е. иметь свойство увеличения объема при замерзании вла­ги в порах грунта (в соответствии с этим требованием выбирают глубину заложения фундамента, которая долж­на быть согласована с глубиной промер­зания грунта в районе строительства); не размываться и не растворяться грун­товыми водами, что также приводит к снижению прочности основания и появ­лению непредусмотренных осадок зда­ния; не допускать просадок и оползней.

Просадки могут произойти при недо­статочной мощности слоя грунта, при­нятого за основание, если под ним располагается грунт, имеющий меньшую прочность (более слабый грунт). Ополз­ни грунта могут произойти при наклон­ном расположении пластов грунта, ог­раниченных крутым рельефом местно­сти.

Главное же внимание при проекти­ровании уделяется вопросу обеспечения равномерности осадок. При этом необходимо, прежде всего, учитывать, что нагрузка от здания может вызвать раз­рушение основания при его недостаточ­ной несущей способности. С другой стороны, основание может и не разрушить­ся, по осадка здания окажется столь неравномерной, что в стенах здания по­явятся трещины, а в конструкциях воз­никнут усилия, могущие привести к аварийному состоянию, всего здания или его части.

Грунтовые воды оказывают значи­тельное влияние на структуру, физиче­ское состояние и механические свойст­ва грунтов, понижая несущую способ­ность основания.

Если же в грунте содержатся легко растворимые в воде вещества (напри­мер, гипс), возможно выщелачивание его, что влечет за собой увеличение по­ристости основания и снижение его не­сущей способности. Для этого в необхо­димых случаях понижают уровень грун­товых вод. В случаях, когда скорость движения грунтовых вод такова, что возможно вымывание частиц мелкозер­нистых грунтов, необходимо применять меры по защите основания. Для этого устраивают вокруг здания специальное шпунтовое ограждение или дренаж.

Каковы же основные виды грунтов и их свойства? Грунты разнообразны по своему составу, структуре и характеру залегания. Принята следующая строи­тельная классификация грунтов:

Скальные — залегают в виде сплош­ного массива (граниты, кварциты, пес­чаники и т. д.) или в виде трещинова­того слоя. Они водоустойчивы, несжи­маемы и при отсутствии трещин и пустот являются наиболее прочными и на­дежными основаниями. Трещиноватые слои скальных грунтов менее прочны.

Крупнообломочные — несвязные об­ломки скальных пород с преобладани­ем обломков размером более 2 мм (свы­ше 50%). К ним можно отнести гра­вий, щебень, гальку, дресву. Эти грун­ты являются хорошим основанием, ес­ли под ними расположен плотный слой.

Песчаные — состоят из частиц круп­ностью от 0,1 до 2 мм. В зависимости от крупности частиц пески разделяют на гравелистые, крупные, средней круп­ности, мелкие и пылеватые. Чем круп­нее и чище пески, тем большую на­грузку может выдержать слой основа­ния из него. Сжимаемость плотного песка невелика, но скорость уплотне­ния под нагрузкой значительна, поэто­му осадка сооружений на таких основа­ниях быстро прекращается. Пески не обладают свойством пластичности.

Частицы грунта крупностью от 0,05 до 0,005 мм называют пылеватыми. Если в песке таких частиц от 15 до 50%, то их относят к категории пылеватых. Когда в грунте пылеватых час­тиц больше, чем песчаных, грунт назы­вают пылеватым.

Глинистые — связные грунты, состо­ящие из частиц крупностью менее 0,005 мм, имеющих в основном чешуй­чатую форму. В отличие от песков гли­ны имеют тонкие капилляры и боль­шую удельную поверхность соприкос­новения между частицами. Так как по­ры глинистых грунтов в большинстве случаев заполнены водой, то при про­мерзании глины происходит ее пучение. Несущая способность глинистых основа­ний зависит от влажности. Сухая гли­на может выдерживать довольно боль­шую нагрузку. Глинистые грунты де­лятся на глины (с содержанием глини­стых частиц более 30%), суглинки (10-30%) и супеси (3-10%).

Лёссовые (макропористые) — глини­стые грунты с содержанием большого количества пылеватых частиц и нали­чием крупных пор (макропор) в виде вертикальных трубочек, видимых нево­оруженным глазом. Эти грунты в сухом состоянии обладают достаточной проч­ностью, но при увлажнении способны давать под нагрузкой большие осадки. Они относятся к просадочным грунтам и при возведении на них зданий тре­буют надлежащей защиты оснований от увлажнения. С органическими примеся­ми (растительный грунт, ил, торф, бо­лотный торф) неоднородны по своему составу, рыхлы, обладают значительной сжимаемостью. В качестве естествен­ных оснований под здания непригодны.

Насыпные — образовавшиеся искус­ственно при засыпке оврагов, прудов, мест свалки и т. п. Обладают свойст­вом неравномерной сжимаемости, и в большинстве случаев их нельзя исполь­зовать в качестве естественных основа­ний под здания. В практике встреча­ются также намывные грунты, образо­вавшиеся в результате очистки рек и озер. Эти грунты называют рефулированными насыпными грунтами. Они яв­ляются хорошим основанием для зда­ний.

Плывуны — образуются мелкими песками с илистыми и глинистыми при­месями, насыщенными водой. Они не­пригодны как естественные основания. Основания должны обеспечивать про­странственную жесткость и устойчи­вость здания, поэтому нормами преду­смотрены допустимые величины осадок здания (80—150 мм в зависимости от вида здания).

По СНиП 11-15—74 определяется так­же предельная нагрузка, которую мож­но передать на грунт основания. Дав­ление, вызываемое этой предельной на­грузкой, называется условным расчет­ным давлением (Лн).

Нормами установлены следующие значения условного расчетного давле­ния на основания при глубине заложе­ния от 1 до 2,5 м и ширине подошвы

фундамента от 0,6 до 1,5 м: для глини­стых грунтов — от 0,1 до 0,6 МПа, а суглинков — от 0,1 до 0,3 МПа, (в за­висимости от влажности и пористости); для песчаных грунтов — от 0,1 до 0,6 МПа (в зависимости от их крупнос­ти и влажности); для супесей — от 0,2 до 0,3 МПа (в зависимости от влаж­ности и плотности); для крупнообломочных грунтов — от 0,3 до 0,6 МПа (в зависимости от крупности частиц); для скальных грунтов допускается при­нимать '/г сопротивления образцов на сжатие в водонасыщенном состоянии.

Этими данными пользуются только для предварительного (прикидочного) расчета размеров фундаментов зданий.

Обычно производят тщательные гео­логические и гидрогеологические ис­следования грунтов, с тем, чтобы опре­делить их физические и механические свойства, а также принять соответству­ющее решение о конструкциях здания. С этой целью определяются вид и мощ­ность отдельных пластов грунта. В за­висимости от этажности здания и мест­ных условий глубина исследования ко­леблется в пределах от 6 до 15 м и бо­лее.

Исследование или разведку грунтов производят путем бурения или шурфо­вания (рис. 4.2,а) и лабораторными анализами образцов пластов грунта. Если в зоне фундаментов обнаружены грунтовые воды, то необходимо провести их химический анализ, так как эти воды могут быть агрессивными и оказывать разрушающее воздействие на материал фундаментов.

Результаты геологических и гидро­геологических исследований заносят в специальные журналы, После чего со­ставляют чертежи вертикальных разре­зов (колонок) буровых скважин или шурфов и по ним — геологического про­филя грунтового массива с указанием полных характеристик пластов грунта и положения уровня грунтовых вод, что дает основание для принятия необходи­мых решений (рис. 4.2,б,г).

Если грунт на участке строительства не удовлетворяет предъявляемым тре­бованиям, а здание необходимо возво­дить именно в этом месте, то устраива­ются искусственные основания. Такие, основания при возведении зданий на слабых грунтах устраивают путем их искусственного упрочнения или заменой слабого грунта более прочным. Упроч­нение грунта может быть осуществле­но следующими способами:

Уплотнением — пневматическими трамбовками (иногда с втрамбованием щебня или гравия) или трамбовочными плитами массой от 2 до 4 т, которые имеют вид усеченного конуса с диа­метром основания не менее 1 м (из же­лезобетона, стали или чугуна). Этот способ применяют в случае, если грун­ты недостаточно плотные, а также при насыпных грунтах. Для уплотнения больших площадей применяют катки массой 10—15 т. Если грунты песча­ные или пылеватые, то для их уплот­нения применяют также поверхностные вибраторы. Необходимо отметить, что этот метод является более эффектив­ным, так как грунт уплотняется быст­рее.

Силикатизацией — для закрепления песков, пылеватых песков (плывунов) и лёссовых грунтов. Для этого в песча­ный грунт поочередно нагнетают растворы жидкого стекла и хлористого \ кальция, для закрепления пылеватых песков — раствор жидкого стекла, сме­шанного с раствором фосфорной кисло­ты, а для закрепления лёссов — только раствор жидкого стекла. В результате нагнетания указанных растворов грунт по истечении определенного времени каменеет и имеет значительно большую несущую способность.

Цементацией — путем нагнетания в грунт по трубам жидкого цементного раствора или цементного молока, кото­рые, затвердевая в порах грунта, при­дают ему камневидную структуру. Це­ментация применяется для укрепления гравелистых, крупных и среднезернистых песков;

Обжигом (термическим способом) — путем сжигания горючих продуктов, по­даваемых в специально устраиваемые скважины под давлением. Этот способ применяется для укрепления лёссовых просадочных грунтов.

Если уплотнить или закрепить грунт затруднительно, слой слабого грунта за­меняют более прочным. Замененный слой грунта называют подушкой. При небольшой нагрузке на основание при­меняют песчаные подушки из крупно­го или средней крупности песка. Тол­щина подушки должна быть такой, что­бы давление на нижележащий слабый слой грунта не превышало его норма­тивного сопротивления.

4.2. Фундаменты и их конструктивные решения

Фундаменты являются важным кон­структивным элементом здания, воспри­нимающим нагрузку от надземных его частей и передающим ее па основание. Фундаменты должны удовлетворять требованиям прочности, устойчивости, долговечности, технологичности уст­ройства и экономичности.

Верхняя плоскость фундамента, на которой располагаются надземные части здания, называется поверхностью фундамента или обрезом, а нижняя его плоскость, непосредственного соприкасающаяся с основанием, - подошвой фундамента.

Расстояние от спланированной поверхности грунта до уровня подошвы называется глубиной заложения фундамента, которая должна соответствовать глубине залегания слоя основания. При этом необходимо также учитывать глу­бину промерзания грунта (рис. 4.3). Если основание состоит из влажного мелкозернистого грунта (песка мелкого или пылеватого, супеси, суглинка или глины), то подошву фундамента нужно располагать не выше уровня промерза­ния грунта. На рис. 4.3 приведены изо­линии нормативных глубин промерза­ния суглинистых грунтов.

Глубина заложения фундаментов под внутренние стены отапливаемых зданий не зависит от глубины промерзания грунта; ее назначают не менее 0,5 м от уровня земли или пола подвала.

В непучинистых грунтах (крупнооб­ломочных, а также песках гравелистых, крупных и средней крупности) глуби­на заложения фундаментов также не зависит от глубины промерзания, одна­ко она должна быть не менее 0,5 м, счи­тая от природного уровня грунта, при планировке подсыпкой и от планировочной отметки при планировке участка срезкой.

По конструктивной схеме фундамен­ты могут быть: ленточные, располагае­мые по всей длине стен или в виде сплошной ленты под рядами колонн (рис. 4.4, а, б); столбчатые, устраивае­мые под отдельно стоящие опоры (ко­лонны или столбы), а в ряде случаев и под стены (рис. 4.4, в, г); сплошные, представляющие собой монолитную плиту под всей площадью здания или его частью и применяемые при особо больших наврузках на степы или от­дельные опоры, а также недостаточно прочных грунтах в основании (рис. 4.4, д, е); свайные в виде отдельных погруженных в грунт стержней с целью передачи через них на основание нагрузок от здания (рис. 4.4, ж).

По характеру работы под действием нагрузки фундаменты различают жест­кие, материал которых работает пре­имущественно на сжатие и в которых не возникают, деформации изгиба, и гибкие, работающие преимущественно на изгиб. Для устройства жестких фун­даментов применяют кладку из природного камня неправильной формы (бутового камня или бутовой плиты), бутобетона и бетона. Для гибких фун­даментов применяют в основном желе­зобетон.

Ленточные фундаменты. По очертанию в профиле ленточный фун­дамент под стену в простейшем слу­чае представляет собой прямоугольник (рис. 4.5, а). Его ширину устанавлива­ют немного больше толщины стены, предусматривая с каждой стороны не­большие уступы по 50—150 мм. Одна­ко прямоугольное сечение фундамента на высоте допустимо лишь при неболь­ших нагрузках на фундамент и доста­точно высокой несущей способности грунта.

Чаще всего для передачи давления на грунт и обеспечения его необходи­мой несущей способности необходимо увеличивать площадь подошвы фунда­мента путем ее уширения. Теорети­ческой формой сечения фундамента в этом случае является трапеция (рис. 4.5,6), где угол, а определяет рас­пространение давления и принимается для бутовой кладки и бутобетона от 27 до 33°, для бетона 45°. Устройство та­ких трапецеидальных фундаментов свя­зано с определенными трудозатратами, поэтому практически такие фундамен­ты в зависимости от расчетной шири­ны подошвы выполняются прямоуголь­ными или ступенчатой формы (рис. 4.5, в, г) с соблюдением правила, чтобы габариты фундамента не выхо­дили за пределы его теоретической формы. Размеры ступеней по ширине (а) принимаются не более 20—25 см, а по высоте (с) — соответственно не менее 40—50 см.

По способу устройства ленточные фундаменты бывают монолитные и сборные.

Монолитные фундаменты устраивают бутовые, бутобетонные, бетонные и железобетонные. На рис. 4.6 показан лен­точный фундамент из бутового камня и бутобетона. Ширина бутовых фунда­ментов должна быть не менее 0,6 м для кладки из рваного бута и 0,5 м — из бутовой плиты. Высота ступеней в бу­товых фундаментах составляет обычно около 0,5 м, ширина — от 0,15 до 0,25 м.

Устройство монолитных бутобетонных, бетонных и железобетонных фун­даментов требует проведения опалубоч­ных работ. Кладку бутовых фундамен­тов производят на сложном или цемент­ном растворе с обязательной перевяз­кой (несовпадением) вертикальных швов (промежутков между камнями, за­полняемых раствором).

Бутобетонные фундаменты состоят из бетона кл. не ниже В5 с включени­ем в его толщу (в целях экономии бе­тона) отдельных кусков бутового кам­ня. Размеры камней должны быть не более 1/3 ширины фундамента.

Монолитные бутовые фундаменты не отвечают требованиям современного ин­дустриального строительства, а для их устройства трудно механизировать ра­боты. Бутовые и бутобетонные фунда­менты являются весьма трудоемкими при возведении и поэтому применяются в основном в районах, где бутовый ка­мень является местным материалом.

Более эффективными являются бетон­ные и железобетонные фундаменты из сборных элементов заводского изготов­ления (рис. 4.7), которые в настоящее время имеют наибольшее распростра­нение. При их устройстве трудовые за­траты на строительстве уменьшаются вдвое. Их можно возводить и в зимних условиях без устройства обогрева.

Сборные ленточные фундаменты под стены состоят из фундаментных бло­ков-подушек и стеновых фундаментных блоков. Фундаментные подушки укла­дываются непосредственно на основа­ние при песчаных грунтах или на пес­чаную подготовку толщиной 100—150 мм, которая должна быть тщатель­но утрамбована.

Фундаментные бетонные блоки укла­дываются на растворе с обязательной перевязкой вертикальных швов, тол­щина которых принимается равной 20 мм (рис. 4.7, 4.8). Вертикальные ко­лодцы, образующиеся торцами блоков, тщательно заполняются раствором. Связь между блоками продольных и угловых стен обеспечивается перевязкой блоков и закладкой в горизонтальные швы арматурных сеток из стали диа­метром 6—10 мм (рис. 4.9).

Блоки-подушки изготовляют толщиной 300 и 400 мм и шириной от 1000 до 2800 м а блоки-стенки — шириной 300, 400, 5U0 и 600 мм, высотой 580 и длиной 780 и 2380 мм.

В практике строительства применяют также сборные фундаментные блоки, имеющие толщину 380 мм при толщине надземных стен 510 и 640 мм (рис. 4.10, а). При такой конструкции прочность материала фундамента ис­пользуется полнее и в результате по­лучается экономия бетона.

Этой же цели соответствует устройство так называемых прерывистых фун­даментов (рис. 4.10,6), в которых бло­ки-подушки укладывают на расстоянии 0,3—0,5 м друг от друга. Промежутки между ними заполняют песком.

Строительство крупнопанельных зда­ний и зданий из объемных блоков по­требовало разработки новых конструк­тивных решений фундаментов. На рис. 4.10, в показан фундамент из крупноразмерных элементов для жило­го дома с поперечными несущими сте­нами и подвалом. Фундамент состоит из железобетонной плиты толщиной 300 мм и длиной 3,5 м и установлен­ных па них панелей, представляющих собой сквозные без раскосные железобе­тонные формы, имеющие толщину 240 мм и высоту, равную высоте под­вального помещения. Соединяются эле­менты между собой с помощью сварки закладных стальных деталей.

При строительстве зданий на участ­ках со значительными уклонами фунда­менты стен выполняют с продольными уступами (рис. 4.11). Высота уступов должна быть не более 0,5 м, а дли­на — не менее 1,0 м. Этим же правилом пользуются при устройстве перехода фундаментов внутренних степ к фунда­ментам наружных при разных глубинах их заложения.

Если необходимо обеспечить незави­симую осадку двух смежных участков здания (например, при их разной этаж­ности), то при устройстве ленточных монолитных фундаментов в их теле уст­раивают сквозные, разъединяющие фун­дамент зазоры. С этой целью в зазоры вставляют доски, обернутые толем. В подвальных зданиях доски с наруж­ной стороны вынимают, и швы в этих местах заполняют битумом. Если фун­даменты сборные, то для обеспечения необходимого зазора блоки укладывают так, чтобы вертикальные швы совпа­дали.

В местах пропуска различных трубо­проводов (водопровода, канализации и др.) в монолитных фундаментах за­ранее предусматриваются соответствую­щие отверстия, а в сборных между бло­ками — необходимые зазоры с после­дующей их заделкой.

Столбчатые фундаменты.

При небольших нагрузках на фунда­мент, когда давление на основание меньше нормативного, непрерывные ленточные фундаменты под стены ма­лоэтажных домов без подвалов целесо­образно заменять столбчатыми. Фунда­ментные столбы могут быть бутовыми, бутобетонными, бетонными и железо­бетонными (рис. 4.12, а). Расстояние между осями фундаментных столбов принимают 2,5—3,0 м, а если грунты прочные, то это расстояние может со­ставлять и 6 м. Столбы располагают обязательно под углами здания, в мес­тах пересечения и примыкания стен и под простенками. Сечение столбчатых фундаментов во всех случаях должно быть не менее: бутовых и бутобетонных — 0,6×0,6 м; бетонных — 0,4×0,4 м.

Столбчатые фундаменты под стены возводят также в зданиях большой этажности при значительной глубине заложения фундаментов (4—5 м), ког­да устраивать ленточный фундамент нецелесообразно из-за большого расхо­да строительных материалов.

Столбы перекрывают железобетонны­ми фундаментными балками. Для пре­дохранения их от сил пучения грунта, а также для свободной их осадки (при осадке здания) под ними делают пес­чаную подсыпку толщиной 0,5—0,6 м. Если при этом необходимо утеплить пристенную часть пола, подсыпку вы­полняют из шлака или керамзита.

Столбчатые одиночные фундаменты устраивают также под отдельные опо­ры зданий. На рис. 4.12, б изображен монолитный бутовый или бетонный фундамент под кирпичную колонну, а на рис. 4.12, в, г — из железобетонных блока-подушки и блока-плиты. Сбор­ные фундаменты под железобетонные колонны могут состоять из одного желе­зобетонного башмака стаканного типа (рис. 4.12, д) или из железобетонных блока-стакана и опорпой плиты под ним (рис. 4.12, е).

Сплошные фундаменты воз­водят в случае, если нагрузка, переда­ваемая на фундамент, значительна, а грунт слабый. Эти фундаменты устра­ивают под всей площадью здания. Для выравнивания перавномерпостей осадки от воздействия нагрузок, передаваемых через колонны каркасных зданий; в двух взаимно перпендикулярных на­правлениях применяют перекрестные ленточные фундаменты (рис. 4.13, а). Их выполняют из монолитного железо­бетона. Если балки достигают значи­тельной ширины, то их целесообразно объединять в сплошную ребристую или безбалочную плиту (рис. 4.13, б, в). При сплошных фундаментах обеспечи­вается равномерная осадка здания, что особенно важно для зданий повышен­ной этажности. Сплошные фундаменты применяют также в том случае, если пол подвала испытывает значительный подпор грунтовых вод.

В практике строительства под инже­нерные сооружения (телевизионные башни, дымовые трубы и др.) применя­ют сплошные фундаменты коробчатого типа.

Свайные фундаменты исполь­зуют при строительстве на слабых сжи­маемых грунтах, а также в тех случа­ях, когда достижение естественного ос­нования экономически или технически нецелесообразно из-за большой глуби­ны его заложения. Кроме того, эти фун­даменты применяют и для зданий, воз­водимых на достаточно прочных грун­тах, если использование свай позволяет получить более экономическое решение.

По способу передачи вертикальных нагрузок от здания на грунт сваи под­разделяют на сваи-стойки и сваи вися­чие. Сваи, проходящие слабые слои

грунта и опирающиеся своими концами на прочный грунт, называются сваями-стойками (рис. 4.14,а), а сваи, не до­стигающие прочного грунта и передаю­щие нагрузку на грунт трением, возни­кающим между боковой поверхностью сваи и грунтом, называются висячими (рис. 4.14, б, в).

По способу погружения в грунт сваи бывают забивные и набивные. По ма­териалу изготовления забивные сваи бывают железобетонные, металлические и деревянные. Набивные сваи изготов­ляют непосредственно на строительной площадке в грунте.

Железобетонные сваи изготовляют сплошные квадратного (от 250×250 до 400×400 мм) и прямоугольного (250×350 мм) сечения, а также трубчатого сечения диаметром от 400 до 700 мм. Чаще других применяют короткие сваи длиной 3—6 м. Трубчатые сваи могут быть как с заостренным нижним кон­цом, так и с открытым.

Деревянные сваи во избежание их быстрого загнивания применяют лишь в грунтах с постоянной влажностью. Их изготовляют из хвойных пород леса диаметром в верхнем отрубе не менее 180 мм; кроме того, ствол деревянной сваи необходимо покрыть битумными или дегтевыми мастиками для предот­вращения их загнивания. Для защиты сваи от размочаливания при забивке на верхний конец ее надевают стальной бугель, а на нижний — стальной баш­мак.

В зависимости от несущей способнос­ти и конструктивной схемы здания сваи размещают в один или несколько ря­дов или кустами (рис. 4.15).


Смотрите также