Содержание, карта.

Плитный фундамент мелкого заложения расчет пример


Фундамент мелкого заложения: плита, расчет, виды

Фундаменты мелкого заложения пользуются большой популярностью среди тех, у кого имеются небольшие приусадебные участки или бани.

Это обусловлено тем, что применяемые фундаментные плиты мелкозагубленной разновидности могут быть размещены в грунтах, которые отличаются большой степенью влажности или неустойчивости.

Виды фундаментов мелкого заложения

Такой монолитный фундамент, созданный своими руками и размещенный на глинистой почве, являет собой пример прочной конструкции.

Даже если он сформирован своими руками на очень неустойчивой и увлажненной глинистой почве, то его монолитный каркас позволит выдержать практически любой вес возведенного на нем строения.

Устройство фундаментов мелкого заложения

Монолитный мелкозагубленный фундамент, построенный для бани, и его плита мелкого заложения, не подвержены не линейной не касательной деформации, которая может быть спровоцирована из-за вспучивания грунта.

Потому, представленная конструкция популярна не только среди тех, кто имеет собственную баню, но и у тех владельцев участков, которым был подан хороший пример использования представленной конструкции.

Такая конструкция, созданная своими руками на глинистой почве, на подготовленном месте для бани, должна быть изготовлена в соответствии со всем требованиями СНиПа.

Такой утепленный фундамент для бани, который установлен на глинистой почве, в соответствии со СНиПом, должен быть снабжен монолитным каркасом.

Читайте также: как и чем осуществить утепление фундамента и отмостки?

Пример соответствия может быть заключен в объединении всех элементов, начиная с опор, расположенных на глинистой почве и заканчивая ростверком для бани.

Морозоустойчивые фундаменты мелкого заложения

Представленная конструкция может быть устойчива к нагрузкам постоянного и сезонного характера. Как пример, можно рассмотреть установку таких плитных оснований с учетом мелкого заложения в следующих разновидностях фундаментов:

  • Ленточный;
  • Столбчатый;
  • Монолитный.

Любой представленный пример типа основания, созданного своими руками на глинистой почве, должен быть выполнен в полном соответствии с регламентом СНиПа.

Такая конструкция принимает форму монолитного цоколя. Фундамент, возводящийся для бани, может быть полым в том случае, если его конструкция будет ленточной, или цельным, если будет задействована фундаментная плита мелкого заложения.

Монолитная разновидность ростверка для бани, которая с легкостью может быть изготовлена своими руками, может быть снабжена интегрированными в структуру вертикальными опорными столбами.

Этот пример демонстрирует точность при произведении расчетов габаритов с ориентировкой на такие параметры, как общий вес бани и оптимальный показатель площади контакта с основанием почвы.

СНиП жестко регламентирует эти показатели, и при установке фундаментной плиты мелкого заложения требуется неукоснительно придерживаться правил, изложенных в СНиПе.

Теплоизоляция фундаментов мелкого заложения

Если производить дальнейшее утепление представленной фундаментной конструкции для бани своими руками, то следует учесть, что при максимальной площади контакта может сформироваться минимальный уровень давления, что может привести к значительному увеличению сметы.

Читайте также: как выполняется утепление фундамента пенополиуретаном?

Этот пример должен донести необходимость точного следования при возведении фундамента своими руками всех положений СНиПа.

Все устройство плит и фундаментов мелкого заложения разделяется на две основных категории. Это метод, с помощью которого производится изоляция и утепление фундамента и метод, с помощью которого пучение устраняется благодаря подсыпке песком.

Этот пример не демонстрирует решения вопроса, связанного с повышенным уровнем энергозатрат, сопряженных с обогревом бани.

Сейчас, для того, чтобы обеспечить утепление помещения производится подсыпка материала с дренирующими свойствами.

В соответствии с требованиями и рекомендациями СНиПа это может быть гравий или щебень. Наиболее целесообразно совмещать подсыпку с комплексными мерами по водоотведению.

Если в непучинистых грунтах наблюдается не очень высокий уровень залегания грунтовых вод, то опирание фундаментной плиты мелкого заложения на грунт должно производиться по СНиПу только после предварительно проведенного утепления.

Устройство готового фундамента мелкого заложения

Для этого может проводиться комплекс работ, связанных с засыпкой пазух плиты и фундамента фрагментами непучинистого грунта.

Это поможет значительно снизить риск возникновения деформационных процессов в отмостке. СНиП допускает применение современных гидрофобных теплоизоляционных материалов с завышенными показателями прочности.

к оглавлению ↑

Разновидности фундаментов мелкого заложения

В соответствии с современной классификацией, все виды мелкозаглубленных фундаментов подразделяются на несколько категорий. Они могут быть:

  • Столбчатыми мелкозаглубленными;
  • Представленными в виде монолитных плит;
  • Незаглубленными решетчатыми;
  • Ленточными.

к оглавлению ↑

Мелкозаглубленный ленточный

Мелкозаглубленый столбчатый фундамент зачастую предназначен для домов с нестандартными габаритами, и строений, построенных из дерева.

Это могут быть хозяйственные постройки и бани, которые располагаются на слабопучинистых или непучинистых видах грунтов.

Если строительство проводится на скальных грунтах, то на такую конструкцию могут быть установлены дома брусового или бревенчатого типа.

Устройство типичного фундамента мелкого заложения

Эта разновидность конструкции должна быть расположена на опорах, параметр шага между которыми равен 1,5-2,5 метрам.

Зачастую, изначально на грунт укладываются плиты, на которые и устанавливается все строение. Для того чтобы сформировать нужную опору можно использовать уже готовые бетонные блоки.

Столбы могут быть изготовлены из кирпичной кладки, с применением бетона или пескобетона. Конструкции из силикатных кирпичей возводить настоятельно не рекомендуется.

На крупноблочных и скальных грунтах опора может быть поставлена на жесткие фрагменты почвы. Предварительно удаляются все его слабые составляющие.

к оглавлению ↑

Монолитная плита

Конструкция фундамента, характерная для мелкого заложения, зачастую в своей основе имеет плиту. Плита при создании конструкции устанавливается на тех грунтах, которые относятся к категории просадочных.

Монолитная плита может быть задействована при строительстве небольших строений, которые могут быть возведены на грунтах с повышенной степенью сыпучести.

Это относится и к условиям с повышенной мерзлотой. Представленный вид фундамента не применятся для строительства легких сооружений, которые не будут инициировать в плитах значительный уровень напряжения.

Читайте также: как устроен фундамент шведская плита и в чем его плюсы?

Ввиду высокой степени универсальности фундаментов с мелким заложением, производится их укладка на пучинистые грунты.

Устройство фундамента мелкого заложения

После этого происходит их поднятие и опускание во время сезонного изменения климатических условий. Если установка дома будет производиться на плите, выполняющей функцию пола для первого этажа, то грунт под ней может подвергаться замерзанию.

Особенно это заметно в средней части здания. Такой фундамент, представленный в виде монолитной плиты мелкого заложения, может содержать в себе слой утеплительного материала, расположенного между грунтом и, собственно, железобетонным изделием.

С этой целью широко используется пенополистирол, при этом параметр толщины плиты не должен превышать 15 см. Благодаря такому решению значительно сокращаются тепловые потери, которые производятся через пол на первом этаже.

Утеплитель выстилается сверху слоя крупнофракционного песка, при этом значение толщины подушки должно равняться 30-40 см.

к оглавлению ↑

Незаглубленный решетчатый фундамент

Эта разновидность фундамента мелкого заложения применяется при строительстве зданий на грунтах, отличающихся высокой степенью просадочности и сыпучести.

Такие фундаменты характеризуются наличием высокой степени жесткости, что в свою очередь позволяет значительно сократить уровень расхода бетонной массы и арматуры.

Фундамент из монолитной плиты

Стоит отметить, что представленная конструкция при монтаже нуждается в создании классической деревянной опалубки, что довольно неэкономично.

Из-за этого данный вид фундамента не получил широкого распространения. Такие конструкции могут быть обустроены с применением плит, изготовленных из экструдированного пенополистирола, который может выполнять функцию опалубки с несъемными частями.

к оглавлению ↑

Ленточный фундамент

Отличается простотой при монтаже и установке. Однако, для создания ленточных элементов, требуется немалое количество расходных материалов.

В основе мелкозаглубленного ленточного фундамента лежит бетонная плита, которая прокладывается по всему периметру возводимой конструкции.

По большому счету ленточный фундамент представляет собой сплошную полосу, изготовленную с применением железобетона, и расположенную по всему периметру конструкции.

Представленная конструкция может достаточно равномерно распределять общий вес здания по своему основанию. Дом может быть построен как из дерева, так и из кирпича.

к оглавлению ↑

Расчет фундаментов мелкого заложения

Фундамент каркасного дома

При создании любого сооружения необходимо производить ряд расчетов. Сначала производится ряд изысканий, направленных на выявление особенностей грунта, на котором будет располагаться фундамент.

После того, как данные будут получены, следует произвести выбор конструкции на основании данных о размерах мелкозаглубленного фундамента. Параметр глубины определяется с учетом трех факторов. Это:

  1. Глубина промерзания грунта.
  2. Высота уровня грунтовых вод.
  3. Степень пучинистости грунта.

Все эти факторы плотно взаимосвязаны между собой. Чем выше уровень воды к поверхности грунта, тем на большую глубину он будет промерзать в зимний период времени.

Для того чтобы выбрать нужную глубину заложения фундамента нужно производить его закладку выше имеющегося уровня грунтовых вод, при этом глубина должна быть на 50 см ниже уровня на котором находится пол строения.

В параметр высоты фундамента закладывается значение общей высоты, включающей показатель величины заглубления, высоты отмостки и расстояние до верхней кромки обреза.

Современные фундаменты обладают глубиной залегания равной 50 сантиметрам. Пи этом наземная часть конструкции должна быть немного меньшей, чем подземная часть.

Фундамент мелкого заложения

При произведении расчета, важно иметь в виду, что ширина конструкции прямо зависит от того уровня нагрузки, который испытывает основание.

Параметр толщины стен также оказывает некоторое влияние. Возводимый фундамент рекомендуется формировать с шириной стен равной 10-15 сантиметрам.

к оглавлению ↑

Расчет фундамента мелкого заложения (видео)

Плитный фундамент мелкого заложения

Плитные фундаменты имеют несколько видов. Один из них – мелкозаглубленный плитный фундамент. Область применения – основание под небольшие лёгкие здания. Обосновано это тем, что такой вид не способен выдержать те нагрузки, которые будут на него оказывать более тяжёлые строения. Основывается на верхних слоях грунта, которые не способны распределить нагрузку и начинает проседать, в конечном итоге в плите мелкого заложения возникают трещины, и начинается процесс медленного разрушения. Такое обстоятельство нужно предотвращать.

Фундаментная плита мелкого заложения обустраивается из бетона с процессом армирования стальными прутьями. Чаще всего используют в целях экономии на материалы, когда планируется возведение небольшого строения из лёгких материалов. Экономия заключается и в том, что исключается необходимость проведения глобальных земляных работ с привлечением специальной техники.

Ещё одним обстоятельством использования малозаглубленого основания – это геологические особенности грунтов. К примеру, если на глубине уровня промерзания грунта размещены проблемные грунты. В этом случае нет смысла обустраивать котлован, а лучше всего поместить плиту, не заглубляя. Причём, оценив, насколько проблемной является почва, можно исправить положение увеличением площади плиты. Монолитная плита в этом случае плывет или должна быть плавающей.

Роль песчаной подушки

Поговорим о том, насколько важно обустройство песчаной подушки при обустройстве малозаглубленного плитного основания. Как уже было сказано, в виду больших затрат на данный вид основания, закладывается на проблемных грунтах. Для уменьшения степени влияния пучения почвы на монолитную плиту, необходимо заменить некоторую часть песком. В противном случае проседание грунта будет неравномерно, начнут образовываться пустоты. Вследствие этого незаглубленная плита плывёт. Это актуально при частых и больших морозах.

С помощью обустройства песчаной подушки можно стабилизировать почти все негативные факторы, которые влияют на фундаментную плиту. Для этого существует определённая технология обустройства, в ходе которого  следует придерживаться ряд рекомендаций:

  • необходимо удалить некоторое количество проблемного грунта и засыпать образованную пустоту песком, слой которой не превышает 20 см;
  • при удалении грунта стараемся не разрушать целостность материкового слоя. Достичь это можно при удалении слоя почвы вручную. Если использовать технику, то гарантировать это невозможно;

Какой бы не был насыпной грунт или песок, не будет обеспечивать такую устойчивость, которую гарантирует нетронутые слои почвы. Поэтому заменяем песком небольшую часть, не более 20 см.

  • увеличить прочность и устойчивость плиты можно за счёт увеличения площади. Соответственно площадь песчаной подушки также увеличивается.

Рекомендации по закладыванию фундамента на насыпном грунте

Если закладывается фундамент на насыпном грунте, который практически не заглубляется,  то помимо обустройства песчаной подушки, необходимо выполнить такие требования для повышения прочности конструкции:

  • слои песчаной подушки при обустройстве должны подвергаться хорошей утрамбовке и поливанию водой;
  • процесс армирования плиты;
  • перед обустройством монолитной плиты необходимо поверх песчаной подушки выполнить стяжку из цементного раствора;
  • следующим этапом является устройство гидроизоляции;
  • на гидроизоляцию устанавливается армирующий каркас, и после этого приступают к заливке бетоном.

Специалисты рекомендуют наряду с гидроизоляцией проводить утепление железобетонных конструкций. Можно это сделать перед заливкой бетона или уже после того, как плита заложена.

Плавающая фундаментная плита: требования к заложению

Самым дорогим вариантом является закладка плитного фундамента для строений, в котором планируется обустройство подвала. Во-первых, плиту необходимо заглублять. При этом выполняется объём земляных работ. Повышает стоимость использование металлических элементов для армирования. Иногда, потребителям не предоставляется другого выбора, так как особенности грунта диктуют условия, и устройство железобетонной конструкции является единственно правильным вариантом.

Но, есть некоторые моменты, которые всё-таки немного позволят снизить затраты. Дешевым видом плитного фундамента является плавающая плита. Расчёт толщины и площади плиты должен быть произведён с учётом всех предполагаемых нагрузок. Бетон, который рекомендуется использовать для заливки – конструктивный. Приведем некоторые общие требования, с помощью которых закладывается плавающий фундамент:

  • необходимо применять бетон марки не менее М300;
  • размеры толщины плиты составляют не менее 20 см, в том случае, когда грунты пучинистые, то толщина может достигать до 40 см;
  • при использовании сборных конструкций для обустройства плавающего основания необходимо первоначально обустроить стяжку с использованием бетона марки М100.

Обустройство сборной плиты не удешевит, так как обустраивается бетонная стяжка. Дополнительные затраты принесёт использование подъёмного крана для монтажа бетонных конструкций.

Нюансы для монолитного фундамента

Монолитный фундамент усиливается за счёт обеспечения пространственной армирующей конструкции. Первоначально собираются две конструкции в виде металлической решётки с ячейками 200×200 мм. Используются для этого металлические прутья с диаметральным сечением от 12 до 16мм. Затем решётки размещаются параллельно друг к другу. Для закрепления используют отрезки арматурных прутьев высотой равной толщине плиты. Все элементы между собой связываются специальной проволокой или свариваются. Армирование основания повысит жесткость не заглубленной конструкции .

При заливке плавающей плиты бетоном следим за тем, чтобы каркасная установка покрывалась слоем не менее 3 см. По правилам, этот параметр рассчитывается в соответствии с диаметральным сечением арматурных прутьев: ½ диаметрального сечения плюс 3 – 4 см. Чаще всего толщина слой составляет около 5 см.

Обязательным шагом является защита плитной «ЖБ» конструкции от воздействия на неё климатических и химических факторов. Для этого проводят обмазочные работы, используя для этого различные битумные мастики. Альтернативой битуму стали различные гидроизоляционные рулонные материалы.

Итак, плитное основание надёжное строение, которое подходит для постройки домов на самых разных грунтах. Но минусами является стоимость закладки, если есть необходимость в обустройстве подвального помещения. Выходом из данной ситуации является монтаж плиты мелкого заглубления.

1.3. Расчет фундаментов мелкого заложения

Расчет ФМЗ начинают с предварительного выбора его конструкции и основных размеров (это глубина заложения фундамента и размер его подошвы).

Далее производят расчет по двум предельным состояниям:

I – Расчет по прочности (устойчивость)

II – Расчет по деформациям, которые являются основным и обязательным для всех ФМЗ.

А расчет по I группе предельных состояний является дополнительным и производится в одном из следующих случаев:

−Сооружение расположено на откосе (склоне) или вблизи него;

−На основание передаются значительные по величине горизонтальные нагрузки;

−В основании залегают очень слабые грунты (или текучие и текучепластичные глинистые грунты и т.п.), обладающие малому сопротивлению сдвигу;

−В основании залегают наоборот, очень прочные – скальные грунты. Установив окончательные размеры фундамента, удовлетворяющие

двум группам предельного состояния, переходят к его конструированию (курс ЖБК).

1.3.а. Определение глубины заложения фундамента

Очевидно, что чем меньше глубина заложения фундамента, тем меньше объем затрачиваемого материала и ниже стоимость его возведения. Однако при выборе глубины заложения фундамента приходится руководствоваться целым рядом факторов:

−Геологическое строение участка и его гидрогеология (наличие воды);

−Глубина сезонного промерзания грунта;

− Конструктивные особенности здания, включая наличие подвала, глубину прокладки подземных коммуникаций, наличие и глубину заложения соседних фундаментов.

1. Учет ИГУ строительной площадки заключается в выборе несущего слоя грунта. Этот выбор производится на основе предварительной оценки прочности и сжимаемости грунтов. По геологическим разрезам. Все многообразие напластования грунта можно представить в виде трех схем:

Рис 10.10. Схемы напластований грунтов с вариантами устройства фундаментов:

1 – нормальный грунт; 2 – более прочный грунт; 3 – слабый грунт; 4 – песчаная подушка; 5 – зона закрепления грунта.

При выборе типа и глубины заложения фундамента придерживаются следующих общих правил:

−Минимальная глубина заложения фундамента принимается не менее 0,5 мот планировочной отметки;

−Глубина заложения фундамента в несущий слой грунта должна быть не менее 10-15 см;

−По возможности закладывать фундаменты выше УГВ для исключения необходимости применения водопонижения при производстве работ;

−В слоистых основаниях все фундаменты предпочтительно возводить на одном грунте или на грунтах с близкой прочностью и сжимаемостью. Если это условие невыполнимо, то размеры фундаментов выбираются главным образом из условия выравнивания осадок.

2. Глубина сезонного промерзания грунта.

Проблема заключается в том, что многие водонасыщенные глинистые грунты обладают пучинистыми свойствами, т.е. увеличивают свой объем при замерзании, за счет образования в них прослоек льда. Замерзание сопровождается подсосом грунтовой воды из ниже лежащих слоев .за счет

чего толщина прослоек льда еще более увеличивается. Это приводит к возникновению сил пучения по подошве фундамента. Которые могут вызвать подъем сооружения. Последующее оттаивание таких грунтов приводит к резкому их увлажнению, снижению их несущей способности и просадкам сооружения.

Наибольшему пучению подвержены грунты, содержащие пылеватые и глинистые частицы. К непучинистым грунтам относят: крупнообломочный грунт с песчаным заполнителем, пески гравелистые, крупные и средней крупности, глубина заложения фундаментов в них не зависит от глубины промерзания (в любых условиях).

силы морозного пучения

Рис. Схема морозного пучения основания

df – глубина сезонного промерзания грунтов.

Если ddf

Для малых зданий (дачные постройки) настоящий бич – боковые силы пучения грунта:

d f = Kh × dfn

Kh – коэффициент, учитывающий тепловой режим подвала здания.

dfn – нормативная глубина сезонного промерзания грунта

dfn = do Mt

Mt – коэффициент, численно равный ∑ абсолютных значений (-) температур за зиму в данном районе.

do– коэффициент, учитывающий тип грунта под подошвой фундамента.

3. Конструктивные особенности сооружения.

Основными конструктивными особенностями возводимого сооружения, влияющими на глубину заложения его фундамента, являются:

−Наличие и размеры подвальных помещений, приямков или фундаментов под оборудование;

−Глубина заложения фундаментов примыкающих сооружений;

−Наличие и глубина прокладки подземных коммуникаций и конструкций самого фундамента.

Глубина заложения фундамента принимается на 0,2-0,5 м ниже

отметки пола подвала (или заглубленного помещения), т.е. на высоту фундаментного блока.

Фундаменты сооружения или его отсека стремятся закладывать на одном уровне.

Рис. 10.11. Выбор глубины заложения фундамента в зависимости от конструктивных особенностей сооружения:

а – здание с подвалом в разных уровнях и приямком; б – изменение глубины заложения ленточного фундамента; 1 – фундаментные плиты; 2 – приямок; 3 – трубопровод; 4 – стена здания; 5 – подвал; 6 – ввод трубопровода; 7 – стеновые блоки.

В других случаях, разность отметок заложения расположенных рядом фундаментов ( h) не должна превышать:

Dh £ a × (tgϕI + cPI )

a – расстояние в свету между фундаментами;

p – среднее давление под подошвой расположенного выше фундамента.

Фундаменты проектируемого сооружения, непосредственно примыкающие к фундаментам существующего, рекомендуется закладывать на одном уровне, либо проведение специальных мероприятий (шпунтовые стены).

Ввод коммуникаций (трубы водопровода, канализации) должен быть заложен выше подошвы фундамента.

Рис. Схема неправильного и правильного ввода коммуникаций

При этом условии трубы не подвержены дополнительному давлению от фундамента, а фундаменты не опираются на насыпной грунт траншей, вырытых для прокладки труб. Кроме того, при необходимости замены труб не будут нарушены грунты основания.

1.3.б Форма и размер подошвы фундамента

Форма бывает любая (круглая, кольцевая, многоугольная, квадратная, прямоугольная, ленточная, табровая, крестообразная и более сложная форма), но, как правило, она повторяет форму опирающейся на нее конструкцию.

Площадь подошвы предварительно может быть определена из условия:

PII ≤ R, где

PII – среднее давление под подошвой фундамента от основного сочетания расчетных нагрузок при расчете по деформациям;

R – расчетное сопротивление грунта основания, определяемое по формуле СНиП.

Рис. 10.12. Расчетная схема центрально нагруженного фундамента.

Реактивная эпюра отпора грунта при расчете жестких фундаментов принимается прямоугольной. Тогда из уравнения равновесия:

NII + Gf + Gg = A× Ro

Сложность в том, что обе части выражения содержат искомые геометрические размеры фундамента. Но в предварительных расчетах вес грунта и фундамента в ABCD заменяют приближенно на:

Gf + Gg = γm × d × A , где

γm – среднее значение удельного веса фундамента и грунта на его уступах;

γm=20 кН/м3;

d – глубина заложения фундамента, м.

NII + γm × A× d = A× Ro Þ A =

NII

- необходимая площадь подошвы

Ro − γm × d

фундамента.

Тогда ширина подошвы (b):

а) в случае ленточного фундамента; A=b·1п.м.:

Ro − γm × d

б) в случае столбчатого квадратного фундамента; A=b2:

Ro − γm × d

в) в случае столбчатого прямоугольного фундамента:

b

l

bl = n - задаемся отношением длины фундамента (l) к его ширине (b) (т.к.

фундамент повторяет очертание опирающейся на него конструкции).

Отсюда: l = nb Þ A = lb = nb2 Þ b = An

в) в случае столбчатого круглого фундамента:

b = D – диаметр фундамента.

A = πD4 2 Þ D = 2πA

После предварительного подбора ширины подошвы фундамента b=f(Ro) необходимо уточнить расчетное сопротивление грунта – R=f(b, φ, c, d, γ).

Зная точное R. Снова определяют b. Действия повторяют, пока два выражения не будут давать одинаковые значения для R и b.

После того. Как был подобран размер фундамента с учетом модульности и унификации конструкций проверяют действительное давление на грунт по подошве фундамента.

Pнач, кр

R

Pпред, кр

P

фаза уплотнения

фаза

P

сдвигов

s

b

yz

0.25b

Рис.

PII =

NII + Gf + Gg

≤ R

A

Чем ближе значение PII к R, тем более экономичное решение.

Этой проверкой мы проверяем возможность расчета по линейной теории деформации грунта.

Если условие не соблюдается, тогда расчет необходимо вести по нелинейной теории, что значительно его осложняет.

1.3.в. Внецентренно нагруженные фундаменты

Это такие фундаменты, у которых равнодействующая внешних нагрузок (сил) не проходит через центр тяжести его подошвы.

Давление на грунт по подошве внецентренно нагруженного фундамента принимается изменяющимся по линейному закону, а его краевые значения определяются по формулам внецентренного сжатия.

Pmax = NII ± M

A W

min

Учитывая, что

A = l ×b;W = b2l

; M = NII ×l ,

6

Приходим к более удобному для расчета виду:

Pmax = NAII (1± 6be) , где

min

NII – суммарная вертикальная нагрузка, включая Gf и Gg;

e – эксцентриситет равнодействующей относительно центра тяжести подошвы;

b – размер подошвы фундамента в плоскости действия момента.

Рис. 10.13. Эпюры давлений под подошвой фундамента при действии внецентренной нагрузки.

Двузначную эпюру стараются не допускать, т.к. в этом случае образуется отрыв фундамента от грунта.

Поскольку в случае действия внецентренного нагружения максимальное давление на основание действует только под краем фундамента, при подборе размеров подошвы фундамента давление допускается принимать на 20% больше расчетного сопротивления грунта, т.е.

P max ≤ 1,2R , но Pcp =

ΣNII £ R

A

В тех случаях, когда точка приложения равнодействующей внешних сил смещена относительно обеих осей фундамента (рис 10.14), давление под ее угловыми точками находят по формуле:

Pmaxc = NAII (1± 6lex ± 6bey )

min

Рис. 10.14. внецентренное загружение фундамента относительно двух глвных осей инерции:

а – смещение равнодействующих внешних сил; б – устройство несимметричного фундамента.

Поскольку в этом случае максимальное давление будет только в одной точке подошвы фундамента, допускается, чтобы его значение удовлетворяло условию:

Pmaxc ≤1,5R , но при этом проверяются условия:

P ≤ R ; P max ≤ 1,2R - на наиболее нагруженной части.

1.3.г. Порядок расчета внеценренно нагруженного фундамента

1. Определяют размеры подошвы как для ценрально нагруженного фундамента.

A =

NII

; P ≤ R

Ro − γm × d

2.Для принятых размеров подошвы определяют краевые напряжения при внецентренном приложении нагрузки

min

3.Проверяется условие P max ≤ 1,2R

4.Если равнодействующая сил смещена относительно обеих осей, тогда еще определяют краевые напряжения в угловых точках фундамента

Pmaxc = NAII (1± 6lex ± 6bey )

min

5. Проверяют условие Pmaxc ≤1,5R

1.3.д. Проверка давления на слабый подстилающий слой грунта (проверка подстилающего слоя).

При наличии в сжимаемой толщи слабых грунтов необходимо проверить давление на них, чтобы убедиться в возможности применения при расчете основания (осадок) теории линейной деформативности грунтов.

Необходимо, чтобы полное давление на кровлю подстилающего слоя не превышало его расчетного сопротивления, т.е.

Gzp + Gzg ≤ Rz , где

Gzp и Gzg - дополнительное и природное вертикальные напряжения в грунте на глубине z от подошвы фундамента;

Rz – расчетное сопротивление грунта на глубине кровли слабого слоя, определяют по формуле СНиП, как для условного фундамента шириной bz и глубиной заложения dz.

Все коэффициенты в формуле (γc1, γc2, k, Mq, Mg и т.д.) находят применительно к слою слабого грунта.

Gzg = γ (d + z) ; Gzp = α × po ; po = p - Gzg, o

P =

NII + Gf + Gg

; α = f (

2z

;

l

)

A

b

b

Рис. 10.15. Расчетная схема к проверке давления на подстилающий слой слабого грунта.

Ширину условного фундамента bz назначают с учетом рассеивания напряжений в пределах слоя толщиной z. Если принять. Что давление Gzp действует по подошве условного фундамента АВ, то площадь его подошвы будет составлять:

Gzp = NII Þ Az = NII , где

Az Gzp

NII – вертикальная нагрузка на уровне обреза фундамента;

- для ленточного фундамента bz = Az

1n.m.

-для квадратного фундаментаbz = Az

-для условного прямоугольного фундамента bz = Az + a2 − a ,

a = (l − b) , где l и b – размеры подошвы проектируемого фундамента. 2

Если проверка подстилающего слоя не выполняется, необходимо увеличить размер подошвы фундамента.

1.3.е. Расчет фундаментов на грунтовых (песчаных) подушках

Если несущий слой грунта оказывается слабым, и его использование в качестве естественного основания оказывается невозможным или нецелесообразным, то приводят замену слабого грунта другим, обладающим высоким сопротивлением сдвигу и имеющим малую сжимаемость, который образует, так называемую, грунтовую подушку.

Рис. 12.1. Устройство песчаных подушек при малой (а) и большой (б) толще слабых грунтов:

1 – фундамент; 2 – слабый грунт; 3 – песчаная подушка; 4 – плотный подстилающий грунт.

∙Подушки делают из:

−Крупнообломочные грунты (гравий, щебень);

−Пески крупные и средней крупности (удобнее и легче использовать);

−Шлак;

−В лессах – местный перемолотый грунт.

∙Чаще всего грунтовые подушки имеют толщину 1…3 м (>3м не целесообразно).

∙Используют подушки: (см. рис.)

−При малой толще слабых грунтов - обыкновенная песчаная подушка;

−При большой толще слабых грунтов - висячая песчаная подушка;

−Такая форма песчаной подушки объясняется тем, что в ее зоне необходимо уместить все виды напряжений.

b

bz

Рис.

Пески: α=30º…35º;

Гравий: α=40º…45º.

Тогда bz = b + 2z ×tgα

−Подушки отсыпаются слоями по 10…15 см, с уплотнением каждого слоя до γd = 16…16,5 кН/м3.

1.3.ж. Последовательность расчета фундамента на песчаной подушке

1. Задаемся характеристиками нового грунтового основания (т.е. характеристиками песчаной подушки)

γ=19 кН/м3; φ=35º; с=0

2. Определяют размеры подошвы фундамента как фундамента, стоящего на грунте с выше перечисленными характеристиками.

P≤R

3. Проверяем подстилающий слой

Gzp + Gzg ≤ Rz

Если это условие не выполняется, то увеличивают высоту висячей подушки.

4. Далее производится расчет деформаций основания. Совместная деформация песчаной подушки и подстилающего слоя S должна быть меньше Su.

S ≤ Su

Если это условие не выполняется. То также увеличивают высоту висячей подушки (или размеры фундамента).

− Применение песчаной подушки приводит к следующим положительным эффектам:

1)Поскольку модуль общей деформации песчаной подушки Е>20 МПа, то их примение приводит к уменьшению осадок сооружения.

2)Поскольку песчаные подушки имеют большой коэффициент фильтрации (сильноводопроницаемы), то резко сокращается время консолидации основания.

3)Песчаные подушки устраиваются из непучинистых грунтов (материалов), поэтому есть возможность уменьшить глубину заложения фундамента d из условия учета глубины сезонного промерзания грунта df.

Стр 9

1.4 Защита фундаментов и заглубленных помещений от подземных вод

и сырости

Необходимость защиты фундаментов от подземных вод и сырости вызвана тем негативным воздействием, которое они оказывают на состояние строительных конструкций (появление на внутренней стороне стен сырости, плесени, отслоение краски, отсыпание штукатурки, ухудшение санитарных условий подвала за счет повышенной влажности; сырость может по капиллярам конструкций распространиться и выше в нижние этажи зданий и т.д. и т.п.).

Три основные группы способов защиты заглубления помещений от вредного воздействия подземных вод и сырости:

−Отвод дождевых и талых вод;

−Устройство дренажей для осушения грунта;

−Применение гидроизоляции.

Выбор способа защиты зависит от топографических, гидрогеологических условий, сезонного колебания УПВ, агрессивности вод, конструктивных особенностей заглубленных помещений.

1.4.а Отвод дождевых и талых вод

1. Вдоль наружных стен зданий обязательно устраивают отмостку с уклоном в сторону от сооружения.

2.Осуществляется вертикальная планировка территории застройки (придание местности определенных уклонов).

3.Устройство системы водоотливных канав, ливневой канализации и т.п.

1.4.б. Дренаж

Это система дрен и фильтров, которая служит для перехвата, сбора и отвода подземных вод от сооружения.

Дренажи могут устраиваться как для одного здания (кольцевой дренаж), так и для комплекса зданий (систематической дренаж), что более экономично, за счет меньшей протяженности.

Виды дренажей:

−Траншейные;

−Закрытые беструбчатые;

−Закрытые трубчатые;

−Галерейного типа;

−Пластовый + пристенный. 1. Траншейные дренажи.

(открытые дренажи и канавы).

Рис. Схема траншейного дренажа

Являясь эффективным средством водопонижения (отвода вод), они в тоже время занимают большие площади, осложняют устройство транспортных коммуникаций и требуют больших затрат для поддержания их в рабочем состоянии.

2. Закрытый беструбчатый дренаж – траншея, заполненная фильтрующим материалом (гравий, щебень, камень) от дна до уровня подземных вод (рис

14.12а)

Предназначен для недолговременной эксплуатации (период пространства работ нулевого цикла).

Рис.14.12. Виды тренажей:

а - закрытый беструбчатый; б – трубчатый совершенного типа; в – трубчатый несовершенного типа; г – дренажная галерея; 1 – дерн корнями вниз; 2 – уплотненная глина; 3 - дерн корнями вверх; 4 – обратная засыпка из метного песчаного грунта; 5 – щебень; 6 – каменная кладка; 7 – глинобетонная подушка; 8 – песок средней крупности; 9

– труба; 10 – водоупор; 11 – обделка из сборных железобетонных элементов; 12 – дренажная засыпка; 13 – отверстия для воды.

3.Трубчатый дренаж – дырчатая труба (перфорированная) с обсыпкой песчано-гравийной смесью или с фильтровым покрытием из волокнистого материала (рис 14.12.б,в).

4.Галерейный дренаж – применяют в ответственных сооружениях и там, где большой приток воды (рис 14.12. г).

5.Пластовый дренаж – слой фильтрующего материала, уложенный под всем сооружением (рис 14.13). Вода из него отводится с помощью обычных трубчатых дрен. Состоит, как правило, из двух слоев:

−Нижний (h ≥ 100 мм) – песок средней крупности;

−Верхний (h ≥ 150 мм) – щебень или гравий.

Рис. 14.13. Пластовый дренаж:

1 – уровень подземных вод; 2 – защищаемое заглубленное помещение; 3 – пристенный дренаж; 4 – песчаный слой; 5 – защитное покрытие щебеночного слоя; 6 – песчаногравийный или щебеночный слой; 7 – труба.

∙Часто при защите отдельных зданий пластовый дренаж сочетается с пристенным (сопутствующим) дренажом – вертикальный слой из проницаемого материала, устраиваемый с наружной стороны

фундамента и заглубляемый ниже его подошвы.

При неглубоком залегании водоупора и слоистом основании иногда достаточно устройства только одного пристенного дренажа.

∙Собираемые воды отводятся и сбрасываются в водоемы, дождевую канализацию или другие специальные места.

→Гидроизоляция предназначена для обеспечения водонепроницаемости

сооружений (антифильтрационная гидроизоляция), а также защиты от коррозии и разрушения материалов фундаментов при физической или химической агрессивности подземных вод (антикоррозионная гидроизоляция).

1). Простейший случай – защита от капиллярной влаги.

На высоте 15-20 см от верха отмостки по выровненной горизонтальной поверхности стен устраивают непрерывную водонепроницаемую прослойку из 1…2 слоев рулонного материала на битумной мастике (рис.)

Рис. 14.14. Изоляция стен от сырости и капиллярной влаги:

а – стена бесподвального здания; б – стена подвального помещения; 1- цементный раствор или рулонный материал; 2 – обмазка битумом за два раза.

2). Если уровень грунтовых вод находится ниже пола подвала (рис.14.14 б), то для защиты фундаментов применяют изоляцию от сырости.

Для этого с наружной поверхности заглубленных стен осуществляется обмазка горячим битумом за 1…2 раза и прокладываются рулонная изоляция в стене на уровне ниже пола подвала.

3). Если УГВ выше отметки пола подвала, то гидроизоляцию осуществляют в виде сплошной оболочки, защищающей заглубленное помещение снизу и по бокам.

Выполняется из рулонных материалов с не гниющей основой (гидроизол, стеклорубероид, металлоизол, толь и т.п.) – оклеичная гидроизоляция.

- Вертикальная гидроизоляция наклеивается, как правило, с наружной стороны фундамента, т.к. в этом случае под действием напора подземных вод изоляция просто прижимается к изолируемой поверхности.

Для предохранения изоляции от механических воздействий (например, при обратной засыпки) снаружи ее ограждают защитной стенкой из кирпича, бетона или блоков (рис. 14.15.) Зазор между стенкой и гидроизоляцией заполняют жидким цементным раствором.

Рис. 14.15. Гидроизоляция подвальных помещений:

а – при небольших напорах подземных вод; б, в – при больших напорах подземных вод; 1 – защитная стенка; 2 – уровень подземных вод; 3 – битумная обмазка; 4 – цементный раствор или

рулонный материал; 5 – рулонная изоляция; 6 – защитный цементный слой; 7 – бетонная подготовка; 8 – цементная стяжка; 9 – железобетонное ребристое перекрытие; 10 – железобетонная коробчатая канструкция

- Горизонтальная гидроизоляция наклеивается на выровненную цементной стяжкой поверхности подготовки и защищается сверху цементным или асфальтовым слоем t=3…5см.

∙Гидростатической давление воды при УГВ до 0,5 м выше пола подвала компенсируются весом конструкции пола (рис. 14.15 а)

∙Если УГВ выше отметки пола подвала более чем на 0,5 м, то применяют специальные конструкции (заделанные в стены ж/б плиты, специальной плиты с упорами в стены здания и т.п.) – рис.14.15 б, в.

∙В любом случае гидроизоляция должна устраиваться на высоту

превышающую максимальную отметку УГВ на 0,5 м. 4). Защита от коррозии.

- При слабоагрессивных водах делают глиняный замок из хорошо перемятой и плотоноутрамбованной глины по всей высоте защитной стенки и с боков фундаментов (рис. 14.16)

Рис. 14.16. Изоляция фундаментов от агрессивных подземных вод:

1 – глиняный замок из перемятой глины; 2 – обмазка битумом за три раза; 3 – защитная стенка; 4 – рулонная изоляция; 5 – чистый пол; 6 – железобетонное перекрытие; 7 – защитный слой; 8 – цементная стяжка; 9 – щебеночная или гравийная подготовка на битуме.

- При более агрессивных водах до устройства глиняного замка поверхность защитной стенки и фундаментов покрывают за 2 раза битумной мастикой или оклеичной изоляции из битумных рулонных материалов.

Снизу фундамента и под полом подвала изоляция имеет более сложную конструкцию (см. рис.)

- На ряду с антикоррозионной изоляцией фундаменты защищают за счет применения более стойких к данному виду агрессивности цементов (сульфатостойкие и т.п.), а также плотных бетонов.

Как определить необходимую толщину фундаментной плиты?

Плитный фундамент представляет собой сплошную железобетонную конструкцию, размещаемую под всей площадью здания и равномерно воспринимающей все возможные весовые нагрузки. Стандартная схема включает дренаж из утрамбованного песка и щебня, плиту из качественного раствора с объемным армированием и гидроизоляцию, в особо сложных условиях основание утепляют. Главным требованием технологии заложения является выбор правильной толщины этих слоев, точное значение определяет расчет. Исходными данными служат параметры грунта, тип и вес постройки, в ходе вычислений важно соблюдать все нормы проектных стандартов.

Оглавление:

  1. От чего зависит толщина основы?
  2. Пример расчета фундамента
  3. Что нужно учесть?

Факторы, влияющие на толщину плитного фундамента

Этот тип основания относится к «плавающим», т.е. способным воспринимать и равномерно перераспределять нагрузки. В частных постройках толщина варьируется от 15 до 35 см, изменение в меньшую сторону не допускается по причине риска раскола плиты под воздействием собственного веса здания, в большую – из-за экономической нецелесообразности, увеличения общей массы и потери подвижности. Главным критерием влияния служит тяжесть конструкций, при использовании кирпича или плотных стройматериалов высота плитного фундамента возрастает на 5-10 см в сравнении с домами с газобетонными или каркасными стенами.

Вторым учитываемым фактором идут размеры будущей постройки. Следует помнить, что все фундаменты выдерживают не только нагрузку на сжатие, но и на изгиб, экстремум приходит на середину. Чем больше длина наружных стен, тем выше риск раскалывания монолитной плиты. Частично эта проблема решается увеличением числа внутренних перегородок с несущими способностями, но для полного исключения риска приходится наращивать толщину самого фундамента. Как следствие, при строительстве на узких участках составление проекта и выбор основания лучше доверить специалистам.

Помимо веса и типа здания при расчете фундаментной плиты (в том числе для проверки ее целесообразности) учитываются особенности грунта: глубина промерзания, несущие способности, однородность и уровень подземных вод. При высокой плотности слоев подбирается мелкозаглубленный вариант, в этом случае для его заложения достаточно вынуть около 50-70 см земли, единственным недостатком такого исполнения является отсутствие подвала. На неустойчивых грунтах фундаментная плита размещается ниже глубины промерзания на 60 см, тогда увеличивается вес постройки и на конструкцию действуют повышенные нагрузки.

Интенсивность влияния подземных вод учитывается при подборе марки бетона, материалов гидроизоляции и толщины дренажной подушки, при значительных рисках подтапливания целесообразно выбрать другой тип основания или провести его утепление влагостойкими материалами.

Последовательность и пример расчета

В ходе вычислений придерживаются следующей схемы:

1. Проводится анализ геологического состояния участка, в зависимости от его типа из таблиц выбирается величина оптимального удельного давления на грунт для плитных фундаментов. Также на этом этапе определяется требуемая глубина заложения основания. При строительстве на супесях и твердых глинах стоит провести сравнение с другими типами, воздействие морозного пучения на них будет максимальным, что приводит к необходимости значительного увеличения толщины плиты.

2. Рассчитываются все весовые нагрузки. Удельный вес любого стройматериала несложно найти в таблицах, исходя из размеров стен, кровли и перекрытий находится масса самого здания. К полученному значению прибавляется средняя нагрузка снежного покрова, выбираемая согласно региону проживания и углу наклона кровли (на скатных крышах свыше 60° она принимается равной нулю). Также обязательно учитывается эксплуатационная (полезная) нагрузка, в среднем для цокольных и межэтажных перекрытий она составляет 210 кг/см2, жилых чердаков – 105. Этот показатель рассчитывают для каждого этажа, по окончании они все суммируются.

3. Определяется площадь монолитной плиты (длина дома умножается на ширину) и величина удельной нагрузки на 1 м2 грунта (общие весовые делятся на полученное значение).

4. Находится оптимальный объем фундамента (путем деления на средний удельный вес армированного бетона – 2500 кг/м3) и его предварительная толщина. Показатель округляют до 5 см в ближайшую сторону.

5. Далее расчет плитного фундамента повторяют с учетом полученного веса основания, его прибавляют к общим весовым нагрузкам. Величину удельного давления на грунт (п.3 выше) сравнивают с оптимальным для данного участка, его допустимое отклонение – ±25 %.

6. Исходя из ожидаемых нагрузок находится марка бетона для заливки, с учетом толщины составляется схема армирования: подбираются диаметр прутьев и частота их расположения.

При отклонении расчетной толщины такой плиты от рекомендуемого диапазона (15-35 см) рассматриваются другие типы фундаментов или варианты ее усиления (ребрами жесткости или сваями). Составление проекта в последнем случае безоговорочно доверяется специалистам. В качестве примера представлен простой расчет двухэтажного дома из газобетона D600 8×8 м высотой в 6,5 м, с монолитным ж/б межэтажном и деревянным чердачном перекрытиях, кровлей из металлочерепицы при строительстве на пластичных глинах (оптимальная нагрузка для такого типа – 0,25кг/см2). Тип плиты – мелкое заложение, цокольное перекрытие отсутствует.

При толщине стен в 40 см объем коробки – 166,4 м3, с учетом удельного веса блоков в 180 кг/м3 ее масса равняется 29952 кг. При площади межэтажного перекрытия в 60 м2 оно весит 30000 кг, чердачного в 64 м2 – 9600. Удельный вес кровли – 30 кг/м3, общий согласно данным проекта: 30×84=2520 кг. Величина полезной нагрузки первого, второго этажей и чердака: 64×210+60×210+64×105=32760 кг. Масса снежного покрова для среднего региона РФ принимается равной 100 кг/м2, в данном случае общее значение: 84×100=8400 кг. В сумме весовые нагрузки достигают: 113232 кг.

Удельная нагрузка на 1 м2 грунта – 113232/64=1770кг/м2= 0,177 кг/см2. Разница между оптимальным равняется 0,25-0,177=0,073, требуемая масса монолитной плиты – 46720 кг. Объем – 46720/2500=18,688 м3, толщина – 0,292 м или 30 см, что соответствует норме. Поверка показывает, что при ее весе в 48000 кг и общем здания (113232+48000) =161232 кг, нагрузка на грунт – 0,252 кг/см2. Это отклонение минимальное, все требования соблюдены, расчет необходимой толщины считается завершенным. Далее с помощью онлайн-калькуляторов несложно составить схему армирования, подобрать диаметр продольных и вертикальных прутьев и определить количество стройматериалов.

Что следует учесть при возведении основания данного типа?

Помимо вышеперечисленных условий плитный фундамент требует соблюдения строительных стандартов, в частности, при выборе марки бетона и арматуры и расчете дренажной системы. Наличие подушки обязательно, этот слой защищает основу от подвижек грунта и влаги. Ее толщина зависит от веса и назначения здания, в идеале проводится ее расчет. Минимум для легких щитовых построек – 15 см, 25 – для гаражей, под дома из кирпича засыпается и уплотняется от 20 см щебня и 25-30 песка. Чем выше риск подтапливания, тем надежнее нужна дренажная система, при необходимости по периметру закладываются водоотводные трубы.

Фундамент-монолитная плита для жилых домов усиливается как минимум двумя продольными сетками арматуры диаметром в пределах 12-16 мм, поддерживаемыми вертикальными прутьями (от 6 мм и выше). Рекомендуемых шаг ячеек – от 20 до 30 мм. Соединения и стыки не свариваются, а обвязываются проволокой диаметром в 0,8-1,2 мм или пластиковыми хомутами. Минимальное отступление от края бетона составляет 5 мм, его нарушение приводит к коррозии и разрушению каркаса. С целью соблюдения этого требования под нижние ряды подкладывают специальные пластиковые стаканчики, сетки размещаются равноудаленно от центра и краев. Обязательным условиям является заливка бетона единым монолитом, с виброуплотнением и обеспечением правильных условий затвердевания.


Смотрите также