Расчет столбчатых фундаментов под стальные колонны


Расчет столбчатого фундамента под колонну

Определяем грузовую площадь, действующую на колону:

А = 24*7 = 168 м2

1. Нагрузка от покрытия

Nп = 5546 Н/м2 * 168 м2 = 932 кН

2. Нагрузка от фермы Nф = 55 кН

3. Нагрузка от кран-балки Qб = 80 кН

4. Q = b * h * l * ? * ?f = 0,4 * 0,4 * 8 * 25 * 103 * 1,1 = 35,2 кН

N = 1102,2 кН

Определяем нормативную нагрузку:

Nн = 958 кН

Принимаем для фундамента бетон класса В 20; Rb = 11,5 мПа; Rbt = 0,9 мПа

Принимаем рабочую арматуру класса А III; Rs = 365 мПа; глубина заложения фундамента - 1,7 м.

Определение размеров фундамента

Глубина заложения колонны в стакан фундамента

hзал = 1.5*bk = 60 см

Глубина стакана

hст = hзал + 5 см = 65 см

Высота фундамета

hф = hст + 20 см = 85 см 90 см

Рабочая высота фундамента

hо = hф - а = 90 - 5 = 85 см

Определяем площадь подошвы фундамента по усилиям

Аф = = = 4,4 м2

аф = bф = = = 2,11 м

Принимаем аф = bф = 2,2 м, тогда Аф = 2,22 = 4,84м2

Рис. 7

Определяем среднее давление на грунт основания по подошве фундамента с учетом собственного веса фундамента.

Ргр = + ? * Нф = + 20 * 1,7 = 232 кН/м = 0,232 мПа

Ргр = 0,232 мПа < Rгр = 0,25 мПа

Расчет рабочей арматуры фундамента

Изгибающие моменты в фундаменте возникают по всем граням тела фундамента.

?1 = = = 23 кН*м

?2 = = = 92 кН*м

?3 = = = 207 кН*м

Аs1 = = = 2,87 см2

Аs1 = = = 5 см2

studbooks.net

Расчет столбчатого фундамента – особенности процедуры и формула упрощенного расчета

Столбчатый тип фундамента представляет собой основание из нескольких вертикальных элементов, погруженных в грунт и связанных в единую конструкцию посредством обвязки из дерева, металла или железобетона. Как правило, такая разновидность основания используется для возведения легких конструкций, например, металлокаркасных ангаров; что касается условий использования, то наиболее оправданным является такой тип фундамента в местах, где велика вероятность воздействия подземных вод.

Сооружения со значительными нагрузками на основание устанавливать на такой фундамент нецелесообразно.

Одним из основных преимуществ столбчатого типа является экономическая выгода и высокая скорость строительства нулевого цикла. Объем земляных и монолитных работ сводится к минимуму, что значительно сокращает финансовые расходы и ускоряет процесс закладки фундамента. Но перед тем как возводить такое основание уделите должное внимание геологическим изыскания, исследуя свойства грунта. В противном случае непредсказуемость отдельных столбов может привести к фатальным последствиям.

Одной из самых частых ошибок при возведении является отсутствие расчета столбчатого фундамента.

Расчет столбчатого фундамента

Основными параметрами расчета столбчатого фундамента под колонну является:

  • количество столбов (колонн);
  • площадь их оснований.

Многие частные строители, а иногда даже и компании берут данные «с потолка», а ведь от этих показателей зависит, как долго простоит ваш ангар или склад и не перекосится ли он сразу же после завершения строительства.

Расчет столбчатого фундамента под колонну состоит из следующих этапов:

  1. Исследуется участок строительства и производится пробное бурение, проводятся геологическое и геодезическое исследование.
  2. Расчет нагрузки на столбчатый фундамент – выяснение максимальной нагрузки, которую строение будет оказывать на фундамент. Иными словами, — весовой расчет столбчатого фундамента под металлическую колонну, то есть определение, сколько будет весить сама конструкция.
  3. Выявление суммарной площади всех фундаментных колонн.

Разумеется, что провести расчет столбчатого фундамента через калькулятор невозможно, для этого необходимо нанимать специалистов.

При расчете вес сооружения прибавляется к весу фундамента (примерный объем × удельный вес железобетона – 2500 кг/м3). Далее необходимо рассчитать суммарную площадь всех колонн фундамента по формуле:

S = 1,3×P/Rо

1,3 – k запаса надежности;

Р – вес здания с фундаментом;

Rо – несущая способность грунта;

На нашем сайте вы можете заказать расчет столбчатого фундамента онлайн, связавшись с нашими менеджерами.

Хотите узнать больше об устройстве фундаментной плиты, этапах возведения здания, утеплении кровли минеральной ватой? Свяжитесь с представителем фирмы «Эвриал» по тел. 7 (495) 374-59-10, и он предоставит вам всю необходимую информацию!

avrial.ru

2.9. КОНСТРУИРОВАНИЕ СТОЛБЧАТОГО ФУНДАМЕНТА

Следует различать две схемы расчета на продавливание:

•при сопряжении сборной колонны с высоким фундаментом с высотой

подколонника, удовлетворяющей условию hcf- dp≥ 0,5(lcf- lc), где hcf – высота подколонника; dp – глубина стакана; lcf – длина поперечного сечения подколонника; lc – длина поперечного сечения колонны (в этом случае продавливание плитной части рассматривается от низа подколонника на действие продольной силы N и изгибающего момента M);

•при сопряжении сборной колонны с низким фундаментом (в этом случае расчет ведется на продавливание колонной от дна стакана при действии только продольной силы N).

Фундамент армируется следующим образом: плита - сеткой С1 из стержней класса AIII и диаметром не менее 10 мм вдоль стороны с размером до 3 м и 12 мм при размере больше 3 м с шагом 200 мм (рис.1); подколонники - двумя сетками С2 из стержней класса AI и AIII. Продольная рабочая арматура класса АIII диаметром не менее 10 мм ставятся с шагом 200 мм, а поперечная арматура класса АI диаметром не менее 6 мм с шагом 600 мм. Подбор диаметра арматуры осуществляется в результате расчета фундамента по прочности при руководстве пособием /10/.

Кроме этого, армируется стакан столбчатого фундамента. Поперечную

арматуру назначают конструктивно в виде сеток С-3 из парных стержней 8 AIII с шестью сетками при наибольшем значении эксцентриситета (е >lc/2) и с пятью сетками в остальных случаях. Шаг сеток в первом варианте 50+2х100+2х200, во втором варианте 50+2х100+200. Верхняя сетка заглублена от обреза на 50 мм, нижняя ставится выше торца колонны не менее чем на 50мм. Пример конструирования столбчатого фундамента приведен в приложении 1.

Под фундаментом, как правило, устраивается подготовка из бетона В 3,5 толщиной 100 мм (с выпуском за грань плиты фундамента не менее чем на 150 мм). При этом толщина защитного слоя бетона принимается равной 35 мм. Подготовку можно не устраивать на крупнообломочных грунтах, в этом случае защитный слой бетона имеет толщину 75 мм.

Для опирания наружных стен и сооружения цоколя необходимо предусмотреть фундаментные балки (табл.15). Размеры их зависят от шага колонн, ширины наружных стен и размеров подколонника.

Для зданий с навесными панелями и шагом колонн 6 м рекомендуется применять балки 2БФ и 3БФ, а при шаге колонн 12 м – балки 5БФ и 6БФ.

Фундаментные балки, как правило, опираются на бетонные столбики, ширина которых должна быть не менее максимальной ширины балки, а обрез на отметке - 0,35м или - 0,65 м (в зависимости от ее высоты).

studfiles.net

6.1.5 Пример расчета фундаментов на естественном основании под колонны зданий и сооружений

Пример 6.1. Определить размеры и площадь сеченая арматуры внецентренно нагруженного фундамента со ступенчатой плитной частью и стаканным сопряжением с колонной размером сечения lс × bс= 400 × 400 мм. Глубина заделки колонны 0,75 м. Отметки: низа колонны — 0,90 м, обреза фундамента — 0,15 м, низа подошвы — 2,65 м. Размер подошвы 3,3 × 2,7 м.

Расчетные нагрузки на уровне обреза фундамента приведены в табл. 6.1.

ТАБЛИЦА 6.1. К ПРИМЕРУ 6.1
Расчетноесочетание При γf = 1 При γf > 1
N,кН Mx,кН·м Qx,кН Mу,кН·м Qy,кН N,кН Mx,кН·м Qx,кН Mу,кН·м Qy,кН
1 2000 80 30 50 20 2400 96 36 60 24
2 800 110 50 70 30 960 132 60 84 36
3 1750 280 60 10 5 2100 336 72 12 6

Примечание. Индексы обозначают; х — направление вдоль большого размера подошвы; у — то же, вдоль меньшего.

Материалы: сталь класса А-III, Rs = 360 МПа (ø 6-8 мм), Rs = 375 МПа (ø 10 мм), бетон тяжелый класса В10 (В15).

Расчетные сопротивления приняты со следующими коэффициентами условий работы: γb1 = 1; γb2 = 0,9; γb4 = 0,85.

Решение. 1. Назначение предварительных геометрических размеров фундамента (рис. 6.12). Определим необходимую толщину стенок стакана по сочетанию 3:

е0 = Mx/ N = 336/2100 = 0,16 м, т.е. е0  0,2lс = 0,2 · 0,4 = 0,08 м, но не менее 0,15 м. Тогда размеры подколонника luc = buc = 2 · 0,15 + 2 ·0,075 + 0,4 = 0,85 м. Принимаем с учетом рекомендуемого модуля 0,3 м.

luc = buc = 0,9 м.

Высоты ступеней плитной части hi = 0,3 м. Площадь подошвы фундамента A = 3,3 · 2,7 = 8,92 м2. Момент сопротивления в направлении большего размера

Wx = l2b/6 = 3,32 · 2,7/6 = 4,9 м2.

Рабочая высота плитной части h = 0,3 · 2 – 0,05 = 0,55 м. Глубина стакана hg = 0,75 + 0,05 = 0,8 м.

2. Расчет фундамента на продавливание. Расстояние от верха плитной части до низа колонны 1,05 м, в то время как huc = (luc – 1c)/2 = 0,25 м, следовательно, проверка на продавливание плитной части производится от низа подколонника.

Максимальное краевое давление на грунт (6.9):

сочетание 1

pmax = N/A + (Mx+QxH)/Wx = 2400/8,92 + (96 + 36 · 2,4)/4,9 = 0,268 + 0,033 = 0,306 МПа;

сочетание 3

pmax = 2100/8,92 + (336 + 72 · 2,4)/4,9 = 0,339 МПа.

Принимаем наибольшее значение pmax = 0,339 МПа. Продавливающая сила F = А0pmax.

По формуле (6.6)

A0 = 0,5b(l – luс – 2h0) – 0,25(b – buc – 2h0)2 = 0,5 · 2,7(3,3 – 0,9 – 2 · 0,55) – 0,025(2,7 – 0,9 – 2 · 0,55)2 = 1,64 м2.

Тогда F = 1,64 · 0,339 = 556 кН.

Задаемся классом бетона В10 с Rbt = 0,57 МПа. С учетом γb2 = 0,9 и γb4 = 0,85 Rbt = 0,57 · 0,9 · 0,85 = 0,436 МПа.

По формуле (6.7) bр = bс+ h0 = 0,9 + 0,55 = 1,45 м.

Тогда

kRbtbph0 = 1 · 0,436 · 1,45 · 0,55 = 305  288 кН.

Принятый фундамент удовлетворяет условию прочности на продавливание

Рассмотрим дополнительно вариант при двухступенчатом фундаменте с высотой верхней ступени 0,45 м. Тогда (при h0 = 0,7 м):

A0 = 0,5 · 2,7(3,3 – 0,9 – 2 · 0,7) – 0,25(2,7 – 0,9 – 2 · 0,7)2 = 1,31 м2;

F´ = 1,31 · 0,339 = 444,1 кН;

b1p =0,9 + 0,7 = 1,6 м.

Несущая способность фундамента по формуле (6.1)

F = 1 · 0,436 · 1,6 · 0,7 = 488,3 кН > 444 кН,

т.е. и такой фундамент удовлетворяет прочности на продавливание.

Покажем, однако, что последний вариант менее экономичен. Действительно, объем плитной части высотой 0,9 м при трехступенчатом фундаменте

V3 = 3,3 · 2,7 · 0,3 + 2,4 · 1,8 · 0,3 + 1,5 · 0,9 · 0,3 = 4,37 м3, а при двухступенчатом фундаменте с учетом дополнительного объема подколонника на высоте 0,9 – 0,75 = 0,15 м

V2 = 3,3 · 2,7 · 0,3 + 2,4 · 1,8 · 0,45 + 0,9 · 0,9 · 0,15 = 4,74 м3 > 4,37 м3.

Итак, принимаем трехступенчатый фундамент с высотой плитной части 0,9 м.

Проверим прочность нижней ступени при заданном ее выносе 450 мм и h01 = 0,25 м:

A0 = 0,5 · 2,7(3,3 – 2,4 – 2 · 0,25) – 0,25(2,7 – 1,8 – 2 · 0,25)2 = 0,5 м2;

P = 0,5 · 0,339 = 169 кН:

b1p = 1,8 + 0,25 = 2,05 м.

Несущая способность ступени F = 1 · 0,436 · 2,05 · 0,25 = 223 кН > 169,5 кН.

Размеры лежащих выше ступеней назначаются пересечением линии AB с линиями, ограничивающими высоты ступеней (рис. 6.13).

Рис. 6.13. К определению размеров ступеней

Определение площади сечений арматуры плитной части фундамента проведем на примере нижней арматуры (направленной вдоль большей стороны подошвы фундамента) класса А-II.

Расчетные усилия на уровне подошвы принимаем по сочетанию 3 без учета веса фундамента:

N = 2100 кН; M = 336 + 72 · 2,4 = 509 кН·м; е0x = 509/2100 = 0,242 м.

Определим давление на грунт в расчетных сечениях (см. рис. 8.12)

Pmax = N/ A + M/ W = 2100/8,92 + 509/4,9 = 370 кН/м2;

По формуле (6.33)

k´I = 1 – 2 · 0,45/3,3 = 0,73.

тогда

pI = N/A + k´IM/W = 236 + 0,73 · 135 = 345 кН/м2.

Аналогично получаем:

k´II = 1 – 2 · 0,9/3,3 = 0,45;

pII = 236 + 0,45 · 135 = 297 кН/м2.

k´III = 1 – 2 · 1,2/3,3 = 0,28

pIII = 236 + 0,28 · 135 = 274 кН/м2.

Изгибающие моменты:

кН·м;

кН·м;

кН·м.

Принимаем арматуру класса А-II с Rs = 285 МПа:

см2;

см2;

см2.

xn--h1aleim.xn--p1ai


Смотрите также