Содержание, карта.

Устройство теплообменника


Устройство пластинчатого теплообменника и конструкция

Описание конструкции

Теплообменник пластинчатый представляет собой аппарат, в котором через тонкие пластины (из стали, меди, графита и т.д.) происходит передача тепла от нагретой к более холодной среде.

Конструктивные особенности:

Пластинчатые теплообменники используются практически во всех технологических процессах и могут применяться в качестве охладителей среды, подогревателей и кондиционеров.

Подбор и расчет стоимости теплообменника удобным для вас способом

Получить консультацию

Проконсультируем по задаче
Подскажем где взять данные
Поможем с подбором
Скажем цену по маркировке

Рассчитаем по параметрам

Делаем расчёт точно и профессионально, без всяких манипуляций

Рассчитать

Есть готовый расчет теплообменника?

Рассчитаем стоимость по номеру расчета, серийному номеру, расчетному листу, спецификации, по шильдику теплообменника

Получить цену

перезвоним в течение 1 минуты

результат от 30 минут

результат от 5 минут

Расчетные данные (нагрузки, давления, температурные графики) выдаются теплоснабжающими организациями (тепловыми сетями, котельными) в виде пояснительных записок, Технических условий (ТУ).

Также эти данные вы можете взять из договора с теплоснабжающей организацией, или из проекта модернизации или переоборудования ИТП, УУТО. Если у вас остались вопросы по данным для расчета, то можно обратиться к менеджеру за консультацией.

Устройство теплообменника:

Давайте разберемся,  из   чего   состоит   разборный теплообменник.

1 – передняя неподвижная плита, 2 – верхняя направляющая, 3 – задняя подвижная плита, 4 – задняя стойка (штатив) , 5 – рабочая пластина с уплотнением, 6 – нижняя направляющая, 7 – патрубки, 8 – ролики для перемещения пластин вдоль направляющих, 9 - шильд с названием и техническими данными, 10 - шпильки

Конструкция разборного пластинчатого теплообменника состоит из:

  • Гофрированных тонких пластин.

Могут выполняться из стали, титана и других сплавов, в зависимости от требований проекта. За счет рельефной поверхности, они обеспечивают высокую турбулентность потока рабочей среды и, соответственно, высокий коэффициент теплопередачи. При этом важно понимать, чтобы добиться максимальной производительности оборудования, нужно сделать правильный расчет пластинчатого теплообменника, который позволит найти оптимальное соотношение, между скоростью потока, объемом рабочей среды и габаритами агрегата.

  • Двух несущих балок.

Пластины теплообменника закрепляются на верхнюю балку и поддерживаются нижней.

  • Подвижной и неподвижной опорных плит.

Между ними размещается конструкция из балок и пластин (фиксация осуществляется стяжными болтами).

  • Уплотнительных прокладок.

Крепятся между пластинами, отвечают за герметичность каналов и препятствуют смешиванию рабочих сред. Прокладки теплообменника могут производиться из нитрилового каучука (для масляных сред), EPDM (для высоких температур) или материала HeatSeal (уникальная разработка компании Альфа Лаваль, применяемая в пароводяных средах).

Выше описана конструкция разборного пластинчатого теплообменника. Паяные модели изготавливаются по той же схеме, только соединение пластин в них производится методом пайки без использования уплотнительных прокладок. Поэтому такие модели дешевле разборных, но более дорогие в обслуживании и целесообразны лишь в средах высокого давления (около 50 Бар).

Конструктивные особенности:

  • Передняя неподвижная и задняя подвижная плита – представляют собой каркас агрегата и стягивают рабочие пластины.
  • Направляющие – закрепляются на передней плите и задней стойке-штативе, служат опорой для подвижной плиты и пластин (последние перемещаются вдоль направляющих по специальным роликам).
  • Теплообменные пластины имеют 4 отверстия и образуют между собой два изолированных и герметичных канала – для холодной и горячей рабочей среды.
  • Резиновые уплотнения фиксируются в канавках пластин при помощи эпоксидного клея или клипс. Клей не рекомендуется использовать в системах с большими перепадами давления, а клипсы – в окисляющей среде и при частых «вскрытиях» оборудования.
  • Разборные пластинчатые  теплообменники  производят на разных видах рам: консольной, двух- и трехопорной. Каждый агрегат обязательно оснащается шильдом, где указывается точное название модели и его техданные.
Виды пластинчатых теплообменников

Разборные теплообменники

Очень гибкие в настройках конструкции, позволяющие увеличивать или уменьшать площадь теплообмена путем добавления или убавления пластин. Легко монтируются и разбираются для очистки или ремонта.

Полусварные теплообменники

Часть такой конструкции может быть собрана при помощи прокладок и быть разборной, а часть – при помощи сварки. Используются очень редко.

Паяные теплообменники

Выгодно отличаются от разборных возможностью выдерживать более высокие давления и температуры. Но при этом, если изменится режим работы и понадобится изменение тепловой мощности, придется полностью заменить аппарат. К тому же их ремонт тоже связан с определенными трудностями: конструкцию придется полностью снять и отвезти в сервисный цех, что влечет за собой длительный простой в технологическом процессе.

Как вы уже поняли, прочитав данную статью, самая распространенная – это разборная модель. Она пригодна для работы с разными теплоносителями (жидкостью, паром и газом, двухфазной средой, при высоких и низких давлениях/температурах).

Конструкция пластинчатого теплообменника | Теплообменники от Производителя с Доставкой по России

Что такое конструкция пластинчатого теплообменника? 

Приобретая любой товар, покупатель хочет знать его внутреннее устройство, из каких деталей он состоит и какие материалы использовались при его производстве. Применительно к оборудованию, которое мы производим можно использовать емкое слово “Конструкция”. Конструкция пластинчатого теплообменника — это совокупность пластин, уплотнений, плит корпуса, крепежных и стяжных элементов из которых состоит пластинчатый теплообменник. Она определяет также материалы, из которых изготовлены все составляющие теплообменника. 

Конструкция различных видов теплообменных аппаратов

В процессе расчета теплообменника мы отталкиваемся от условий его эксплуатации. Они определяют, какое максимальное рабочее давление и температура будут у оборудования. Можно сказать, что условия эксплуатации определяют конструкцию теплообменника.  Мы перечислим основные виды теплообменников, которые нашли широкое практическое применение и имеют различное внутреннее устройство: 

  • Пластинчатые разборные - они имеют разборную конструкцию, которая позволяет увеличивать их мощность и менять вышедшие из строя комплектующие. 

  • Пластинчатые паянные - они состоят из спаянных между собой пластин. В качестве припоя используется медь или никель. Это цельносварной теплообменник. 

  • Кожухотрубные - они представляют собой набор трубок, собранных в пучок, которые жестко крепятся к кожуху теплообменника. Это аппарат разобрать можно только частично. 

  • Спиральные - поверхность теплообмена в этих аппаратах образована листами метала, закрученными в спираль. Все элементы теплообменника сварены между собой. Это неразборные аппараты. 

  • Погружные - теплообмен осуществляется за счет элементов, которые погружают в нагреваемую и охлаждаемую среду. Это сварная неразборная конструкция теплообменника. 

  • Оросительные - имеют сложную конструкцию и состоят из пучка труб, по которым стекает жидкий охладитель. Это неразборные теплообменники. 

  • Сварные - состоят из пластин, сваренных между собой. Это частично разборный аппарат. 

  • Графитовые - роль элемента, который передает тепло, выполняют графитовые трубы, которые крепятся к корпусу теплообменника.  

Учитывая тот факт, что разборные пластинчатые теплообменники получили наибольшее распространение, мы подробно рассмотрим его конструкцию. 
 

Рисунок 1 - Конструкция разборного пластинчатого теплообменного аппарата 
 

Пластинчатый теплообменник состоит из: 

  • Задней стойки (5)  

  • Ножка теплообменника (6) 

  • Стягивающих элементов (7) 

  • Патрубки - Ответные фланцы (8)  

 

 

Будет логично рассмотреть каждый элемент по отдельности, его назначение, из чего он состоит и как изготавливается: 

Основная и прижимная плита

Основная и прижимная плита изготавливается из конструкционной стали. К основной плите крепится ножка теплообменника, направляющие, а также привариваются патрубки если это резьбовое соединение либо прикручиваются фланцы - если фланцевое. Назначение прижимной плиты прижимать пакет пластин с помощью стяжных элементов до необходимого расстояния, при котором пакет пластин будет герметичным и выдерживать рабочее давление. В зависимости от толщины основной и прижимной плиты теплообменники могут работать при давлении 6, 10 и 16 бар. 

Пакет пластин с уплотнениями

Пакет пластин состоит из нержавеющих пластин (AISI 304, AISI 316) с толщиной от 0,4 мм до 0,6 мм и уплотнительных прокладок из различных материалов (EPDM, NBR, Viton). Пластины — это основной элемент теплообменника, по ним протекают теплоносители, а через стенки пластин происходит теплообмен. 
 

Рисунок 2 -Пластины теплообменные

 

 

В зависимости от мощности теплообменника, от температурных режимов работы, типов присоединений трубопроводов пластины могут быть различных размеров и форм рисунков оребрения. У каждого типоразмера пластины есть два типа - промежуточная (1) и конечная (2) - рисунок 2. Изготавливаются пластины из нержавеющей стали (AISI 316, 304) с применением пресса давлением до 20000 т., который выдавливает рисунок пластин. За счет этого образуются каналы, по которым текут теплоносители.

Уплотнительные прокладки прикрепляются к пластинам и с помощью стяжки теплообменника обеспечивают его герметичность.
 

Рисунок 3 - Уплотнения 

В зависимости от типа среды и параметров работы (температуры и давления) уплотнения делятся на: 

  • EPDM (этилен пропиленовый каучук) - самый распространённый, может работать с различными средами при давлении 16 бар и температурой до 160 С. 

  • NBR (бутадиен нитрильный каучук) используется в пищевой промышленности, для работы с маслами при температуре до 120 С 

  • VITON (фтор каучук) высокотемпературные уплотнения до 195 С. 

По типу крепления уплотнения делятся на клипсовые, вставные и клееные. Уплотнительные прокладки являются расходным материалом и время от времени требуют замены в теплообменниках.  

Направляющие

Задача направляющих кроется в самом названии. Между ними укладываются пакет пластин, не давая ему сместится при укладке. Также к концу направляющих крепиться задняя опорная стойка. Изготавливается из конструкционной стали после чего оцинковывается. В зависимости от количества пластин бывает различной длины. 

Рисунок 4 - Направляющие

Опорные стойки (передняя и задняя)

Стойки предназначены для опоры теплообменника на месте установки. Имеют соответствующие отверстия для крепления к фундаменту либо опорам. В зависимости от типоразмера теплообменного аппарата могут быть различных размеров.

Рисунок 5 - Передние опорные стойки

Рисунок 6 - Задние опорные стойки 

Стяжные элементы

С помощью стяжного элемента “прижимается” прижимная плита к основной и стягивается пакет пластин до необходимого расстояния. Стяжной элемент состоит из болта, гайки, центровочных шайб, храповой шайбы, гровера и прижимной шайбы. Все элементы оцинкованы. Так же, как и направляющие, стяжной элемент в зависимости от количества пластин в теплообменнике имеет различную длину.

Рисунок 7 - Стяжной элемент

Присоединительные патрубки

В зависимости от типа присоединения к трубопроводам бывают фланцевые присоединения либо резьбовые. Могут изготавливаться из обычной стали, и из нержавеющей стали (для пищевой среды). Диапазон диаметров - от Ду 25 до Ду 600.

Рисунок 8 - Резьбовое присоединение

Рисунок 9 - Фланцевое соединение
 

Наша компания является производителем корпусов теплообменников. Имеем большой склад теплообменных пластин различных типоразмеров. Всегда в наличии уплотнительные прокладки. Процесс изготовления теплообменника занимает в среднем 1 день. Поставляем теплообменники по все России транспортными компаниями ПЭК, Деловые линии, DPD, СДЭК, GTD и др. 

 

Общие сведения о теплообменниках — типы, конструкции, области применения и руководство по выбору

Крупный план части теплообменника вода-воздух.

Изображение предоставлено: Алаэттин ЙИЛДИРИМ/Shutterstock.com

Теплообменники — это устройства, предназначенные для передачи тепла между двумя или более жидкостями, т. е. жидкостями, парами или газами, имеющих разные температуры. В зависимости от типа используемого теплообменника процесс теплопередачи может быть газ-газ, жидкость-газ или жидкость-жидкость и происходить через твердый сепаратор, который предотвращает смешивание жидкостей, или прямой поток жидкости. контакт. Другие конструктивные характеристики, включая конструкционные материалы и компоненты, механизмы теплопередачи и конфигурации потока, также помогают классифицировать и классифицировать типы доступных теплообменников. Эти теплообменные устройства, находящие применение в самых разных отраслях промышленности, разработаны и изготовлены для использования как в процессах нагрева, так и в процессах охлаждения.

В этой статье основное внимание уделяется теплообменникам, изучению различных доступных конструкций и типов и объяснению их соответствующих функций и механизмов. Кроме того, в этой статье изложены соображения по выбору и общие области применения для каждого типа теплообменного устройства.

Термодинамика теплообменника

Конструкция теплообменника представляет собой упражнение в термодинамике, науке, изучающей поток тепловой энергии, температуру и взаимосвязь с другими формами энергии. Чтобы понять термодинамику теплообменника, хорошей отправной точкой является изучение трех способов передачи тепла: проводимости, конвекции и излучения. В разделах ниже представлен обзор каждого из этих режимов теплопередачи.

Проводимость

Теплопроводность — это передача тепловой энергии между материалами, находящимися в контакте друг с другом. Температура — это мера средней кинетической энергии молекул в материале: более теплые объекты (находящиеся при более высокой температуре) демонстрируют большее молекулярное движение. Когда более теплый объект соприкасается с более холодным объектом (тот, который имеет более низкую температуру), между двумя материалами происходит передача тепловой энергии, при этом более холодный объект получает больше энергии, а более теплый объект становится менее заряженным. Этот процесс будет продолжаться до тех пор, пока не будет достигнуто тепловое равновесие.

Скорость, с которой тепловая энергия передается в материале за счет теплопроводности, определяется следующим выражением:

 

В этом выражении Q представляет собой количество тепла, переданного через материал за время t , ΔT представляет собой разность температур между одной и другой сторонами материала (температурный градиент), A представляет собой площадь поперечного сечения материала, d - толщина материала. Постоянная k известен как теплопроводность материала и является функцией внутренних свойств материала и его структуры. Воздух и другие газы обычно имеют низкую теплопроводность, в то время как неметаллические твердые вещества имеют более высокие значения, а металлические твердые вещества обычно имеют самые высокие значения.

Конвекция

Конвекция – это передача тепловой энергии от поверхности посредством движения нагретой жидкости, такой как воздух или вода. Большинство жидкостей расширяются при нагревании и, следовательно, становятся менее плотными и поднимаются по сравнению с другими более холодными частями жидкости. Итак, когда воздух в комнате нагревается, он поднимается к потолку, потому что он теплее и менее плотный, и передает тепловую энергию, сталкиваясь с более холодным воздухом в комнате, затем становится более плотным и снова падает к полу. Этот процесс создает естественный или свободный конвекционный поток. Конвекция также может происходить за счет того, что называется принудительной или вспомогательной конвекцией, например, когда нагретая вода прокачивается по трубе, например, в водяной системе отопления.

Для свободной конвекции скорость передачи тепла выражается законом охлаждения Ньютона:

 

 

Где Q-точка — скорость теплопередачи, ч c — коэффициент конвективной теплопередачи, A — площадь поверхности, на которой происходит процесс конвекции, ΔT — разность температур между поверхность и жидкость. Коэффициент конвективной теплоотдачи h c является функцией свойств жидкости, подобно теплопроводности материала, упомянутого ранее в отношении теплопроводности.

Радиация

Тепловое излучение — это механизм передачи тепловой энергии, который включает излучение электромагнитных волн от нагретой поверхности или объекта. В отличие от проводимости и конвекции, тепловое излучение не требует наличия промежуточной среды для переноса волновой энергии. Все объекты, температура которых выше абсолютного нуля (-273,15 o C) излучают тепловое излучение в типичном широком спектральном диапазоне.

Чистая скорость потери тепла излучением может быть выражена с использованием закона Стефана-Больцмана следующим образом:

 

где Q — теплопередача в единицу времени, T h — температура горячего объекта (в абсолютных единицах, o K), T c — температура более холодной окружающей среды (также в абсолютных единицах, o K), σ – постоянная Стефана-Больцмана (значение которой равно 5,6703 x 10 -8 Вт/м 2 K 4 ). Термин, представленный ε , представляет собой коэффициент излучения материала и может иметь значение от 0 до 1, в зависимости от характеристик материала и его способности отражать, поглощать или передавать излучение. Это также функция температуры материала.

Основные принципы, лежащие в основе теплообменников

Независимо от типа и конструкции, все теплообменники работают в соответствии с одними и теми же фундаментальными принципами, а именно нулевым, первым и вторым законами термодинамики, которые описывают и определяют передачу или «обмен» тепла от одной жидкости к другой.

  • Нулевой закон термодинамики гласит, что термодинамические системы, находящиеся в тепловом равновесии, имеют одинаковую температуру. Кроме того, если каждая из двух систем находится в тепловом равновесии с третьей системой, то две первые системы должны быть в равновесии друг с другом; таким образом, все три системы имеют одинаковую температуру. Этот закон, предшествующий трем другим законам термодинамики по порядку, но не по развитию, не только выражает тепловое равновесие как переходное свойство, но также определяет понятие температуры и устанавливает ее как измеримое свойство термодинамических систем.
  • Первый закон термодинамики основывается на нулевом законе, устанавливая внутреннюю энергию ( U ) как еще одно свойство термодинамических систем и указывая на влияние тепла и работы на внутреннюю энергию системы и энергию окружающей среды. Кроме того, первый закон, также называемый законом преобразования энергии, по существу гласит, что энергия не может быть создана или уничтожена, а только передана в другую термодинамическую систему или преобразована в другую форму (например, в теплоту или работу).

    Например, если тепло поступает в систему из окружающей среды, происходит соответствующее увеличение внутренней энергии системы и уменьшение энергии окружающей среды. Этот принцип можно проиллюстрировать следующим уравнением, где ΔU система представляет внутреннюю энергию системы, а ΔU окружающая среда представляет внутреннюю энергию окружающей среды:

  • Второй закон термодинамики устанавливает энтропию ( S ) как дополнительное свойство термодинамических систем и описывает естественную и неизменную тенденцию Вселенной и любой другой замкнутой термодинамической системы к увеличению энтропии с течением времени. Этот принцип можно проиллюстрировать следующим уравнением, где ΔS представляет собой изменение энтропии, ΔQ представляет собой изменение тепла, подведенного к системе, и T  представляет собой абсолютную температуру:

    Он также используется для объяснения тенденции двух изолированных систем, когда они взаимодействуют и свободны от всех других влияний, двигаться к термодинамическому равновесию. Как установлено вторым законом, энтропия может только увеличиваться, но никогда не уменьшаться; следовательно, каждая система по мере увеличения энтропии неизменно движется к наибольшему значению, достижимому для указанной системы. При этом значении система достигает состояния равновесия, при котором энтропия больше не может ни увеличиваться (поскольку она максимальна), ни уменьшаться, поскольку это действие нарушило бы второй закон. Следовательно, возможны только те системные изменения, при которых энтропия не претерпевает изменений (т. Е. Отношение количества тепла, добавляемого или отводимого в систему, к абсолютной температуре остается постоянным).

В целом эти принципы определяют основные механизмы и операции теплообменников; нулевой закон устанавливает температуру как измеримое свойство термодинамических систем, первый закон описывает обратную зависимость между внутренней энергией системы (и ее преобразованными формами) и энергией окружающей ее среды, а второй закон выражает тенденцию двух взаимодействующих систем к взаимодействию. двигаться к тепловому равновесию. Таким образом, теплообменники функционируют, пропуская жидкость с более высокой температурой ( F 1 ) для прямого или косвенного взаимодействия с жидкостью более низкой температуры ( F 2 ), что позволяет передавать тепло от

F 1  F 2  для достижения равновесия. Этот перенос тепла приводит к снижению температуры для F 1 и повышению температуры для F 2 . В зависимости от того, направлено ли приложение на нагрев или охлаждение жидкости, этот процесс (и устройства, которые его используют) можно использовать для направления тепла к системе или от нее соответственно.

Как указано выше, все теплообменники работают по одним и тем же основным принципам. Однако эти устройства можно классифицировать и классифицировать несколькими различными способами в зависимости от их конструктивных характеристик. К основным характеристикам, по которым можно классифицировать теплообменники, относятся:

  • Конфигурация потока
  • Способ изготовления
  • Механизм теплопередачи

Конфигурация потока

Конфигурация потока, также называемая схемой потока теплообменника, относится к направлению движения жидкостей внутри теплообменника по отношению друг к другу. В теплообменниках используются четыре основные конфигурации потока:

  • Прямоток
  • Противоток
  • Перекрестный поток
  • Гибридный поток
Прямоток

Прямоточные теплообменники , также называемые прямоточными теплообменниками, представляют собой теплообменные устройства, в которых жидкости движутся параллельно и в одном направлении друг с другом. Хотя эта конфигурация обычно приводит к более низкой эффективности, чем конфигурация с противотоком, она также обеспечивает наибольшую тепловую однородность по стенкам теплообменника.

Противоточный поток

Противоточные теплообменники , также известные как противоточные теплообменники, сконструированы таким образом, что жидкости движутся антипараллельно (т. е. параллельно, но в противоположных направлениях) друг другу внутри теплообменника. Противоточная конфигурация, наиболее часто используемая из конфигураций потока, обычно демонстрирует наивысшую эффективность, поскольку она обеспечивает наибольшую передачу тепла между жидкостями и, следовательно, наибольшее изменение температуры.

Перекрестный поток

В перекрестноточных теплообменниках жидкости текут перпендикулярно друг другу. Эффективность теплообменников, в которых используется эта конфигурация потока, находится между эффективностью противоточных и прямоточных теплообменников.

Гибридный поток

Теплообменники с гибридным потоком демонстрируют некоторую комбинацию характеристик ранее упомянутых конфигураций потока. Например, в конструкциях теплообменников может использоваться несколько проходов потока и устройств (например, как противоточных, так и поперечно-точных устройств) в одном теплообменнике. Эти типы теплообменников обычно используются для учета ограничений приложения, таких как пространство, бюджетные затраты или требования к температуре и давлению.

На рис. 1 ниже показаны различные доступные конфигурации потока, включая конфигурацию с перекрестным/встречным потоком, которая является примером конфигурации с гибридным потоком.

Рис. 1. Конфигурации потока теплообменника

Способ изготовления

В то время как в предыдущем разделе теплообменники классифицировались на основе типа используемой конфигурации потока, в этом разделе они классифицируются на основе их конструкции. Конструктивные характеристики, по которым можно классифицировать эти устройства, включают:

  • Рекуперативный и регенеративный
  • Прямое и непрямое
  • Статическая и динамическая
  • Типы используемых компонентов и материалов
Рекуперативный и регенеративный

Теплообменники можно классифицировать как рекуперативные теплообменники и регенеративные теплообменники.

Разница между рекуперативными и регенеративными теплообменными системами заключается в том, что в рекуперативных теплообменных аппаратах (обычно называемых рекуператорами) каждая жидкость одновременно протекает по собственному каналу внутри теплообменника. С другой стороны, регенеративные теплообменники , также называемые емкостными теплообменниками или регенераторами, позволяют попеременно пропускать более теплые и более холодные жидкости через один и тот же канал. И рекуператоры, и регенераторы могут быть дополнительно разделены на различные категории теплообменников, такие как прямые или непрямые, статические или динамические, соответственно. Из двух указанных типов рекуперативные теплообменники чаще используются в промышленности.

Прямое и непрямое

В рекуперативных теплообменниках используются процессы прямого или непрямого контакта для обмена теплом между жидкостями.

В теплообменниках прямого контакта жидкости не разделяются внутри устройства и тепло передается от одной жидкости к другой посредством прямого контакта. С другой стороны, в непрямых теплообменниках жидкости остаются отделенными друг от друга теплопроводными компонентами, такими как трубы или пластины, на протяжении всего процесса теплопередачи. Компоненты сначала получают тепло от более теплой жидкости, когда она проходит через теплообменник, а затем передают тепло более холодной жидкости, когда она проходит через теплообменник. Некоторые из устройств, в которых используются процессы прямого контактного переноса, включают градирни и паровые инжекторы, а устройства, в которых используются процессы непрямого контактного переноса, включают трубчатые или пластинчатые теплообменники.

Статическая и динамическая

Существует два основных типа регенеративных теплообменников — статические теплообменники и динамические теплообменники. В статических регенераторах (также известных как регенераторы с неподвижным слоем) материал и компоненты теплообменника остаются неподвижными, когда жидкости проходят через устройство, в то время как в динамических регенераторах материал и компоненты перемещаются на протяжении всего процесса теплопередачи. Оба типа подвержены риску перекрестного загрязнения между потоками жидкости, что требует тщательного проектирования во время производства.

В одном примере статического типа более теплая жидкость проходит через один канал, а более холодная жидкость проходит через другой в течение фиксированного периода времени, в конце которого с помощью быстродействующих клапанов поток меняет направление таким образом, что два жидкости переключают каналы. В примере динамического типа обычно используется вращающийся теплопроводный компонент (например, барабан), через который непрерывно протекают более теплые и более холодные жидкости, хотя и в отдельных, герметичных секциях. Когда компонент вращается, любая данная секция попеременно проходит через более теплый пар и более холодные потоки, позволяя компоненту поглощать тепло от более теплой жидкости и передавать тепло более холодной жидкости по мере ее прохождения. На рис. 2 ниже показан процесс теплопередачи в регенераторе роторного типа с противоточной конфигурацией.

Рисунок 2 – Теплопередача в регенераторе роторного типа

Компоненты и материалы теплообменника

Существует несколько типов компонентов, которые можно использовать в теплообменниках, а также широкий спектр материалов, используемых для их изготовления. Используемые компоненты и материалы зависят от типа теплообменника и его предполагаемого применения.

Некоторые из наиболее распространенных компонентов, используемых для изготовления теплообменников, включают кожухи, трубы, спиральные трубы (змеевики), пластины, ребра и адиабатические колеса. Более подробная информация о том, как эти компоненты функционируют в теплообменнике, будет представлена ​​в следующем разделе (см. Типы теплообменников).

В то время как металлы очень подходят и широко используются для изготовления теплообменников из-за их высокой теплопроводности, как в случае теплообменников из меди, титана и нержавеющей стали, другие материалы, такие как графит, керамика, композиты или пластмассы , может предложить большие преимущества в зависимости от требований приложения теплопередачи.

Рисунок 3 – Классификация теплообменников по конструкции Примечания: * Теплообменные устройства, перечисленные под классификациями конструкции, являются лишь небольшой выборкой из имеющихся.
** Изображенная классификация приведена на сайте Thermopedia.com.

Механизм теплопередачи

В теплообменниках используются два типа механизмов теплопередачи: однофазный и двухфазный теплообмен.

В однофазных теплообменниках жидкости не претерпевают никаких фазовых переходов на протяжении всего процесса теплопередачи, а это означает, что как более теплые, так и более холодные жидкости остаются в том же состоянии вещества, в котором они поступили в теплообменник. Например, в системах теплопередачи вода-вода более теплая вода теряет тепло, которое затем передается более холодной воде и не переходит в газообразное или твердое состояние.

С другой стороны, в двухфазных теплообменниках жидкости претерпевают фазовый переход в процессе теплопередачи. Фазовый переход может происходить в одной или обеих участвующих текучих средах, что приводит к переходу от жидкости к газу или от газа к жидкости. Как правило, устройства, использующие двухфазный механизм теплопередачи, требуют более сложных конструктивных решений, чем устройства, использующие однофазный механизм теплопередачи. Некоторые из типов доступных двухфазных теплообменников включают бойлеры, конденсаторы и испарители.

Типы теплообменников

В зависимости от указанных выше конструктивных характеристик имеется несколько различных вариантов теплообменников. Некоторые из наиболее распространенных вариантов, используемых в промышленности, включают:

  • Кожухотрубчатые теплообменники
  • Двухтрубные теплообменники
  • Пластинчатые теплообменники
  • Конденсаторы, испарители и бойлеры

Кожухотрубные теплообменники

Наиболее распространенный тип теплообменников. Кожухотрубные теплообменники состоят из одной трубы или ряда параллельных труб (т. е. пучка труб), заключенных в герметичный цилиндрический сосуд высокого давления (т. е. кожух). Конструкция этих устройств такова, что одна жидкость течет через меньшую трубку (трубки), а другая жидкость течет вокруг ее / их внешней (их) и между ней / ними внутри герметичной оболочки. Другие конструктивные характеристики, доступные для этого типа теплообменника, включают оребренные трубы, одно- или двухфазный теплообмен, противоточные, прямоточные или перекрестные схемы, а также одно-, двух- или многоходовые конфигурации.

Некоторые из доступных типов кожухотрубных теплообменников включают теплообменники со спиральными змеевиками и теплообменники с двойной трубой, а некоторые из применений включают предварительный нагрев, охлаждение масла и производство пара.

Крупный план пучка труб трубчатого теплообменника.

Изображение предоставлено: Антон Москвитин/Shutterstock.com

Двухтрубные теплообменники

Форма кожухотрубного теплообменника. В двухтрубных теплообменниках используется простейшая конструкция и конфигурация теплообменника, состоящая из двух или более концентрических цилиндрических труб или трубок (одна трубка большего размера и одна или несколько трубок меньшего размера). В соответствии с конструкцией кожухотрубного теплообменника одна жидкость течет через меньшую трубу (трубы), а другая жидкость течет вокруг меньшей трубы (трубок) внутри большей трубы.

Требования к конструкции двухтрубных теплообменников включают в себя характеристики рекуперативного и непрямого контактных типов, упомянутых ранее, поскольку жидкости остаются разделенными и проходят через свои собственные каналы на протяжении всего процесса теплопередачи. Тем не менее, существует некоторая гибкость в конструкции двухтрубных теплообменников, поскольку они могут быть спроектированы с прямотоком или противотоком и использоваться модульно в последовательных, параллельных или последовательно-параллельных конфигурациях в системе. Например, на Рисунке 4 ниже показана передача тепла в изолированном двухтрубном теплообменнике с прямоточной конфигурацией.

Рис. 4. Теплопередача в двухтрубном теплообменнике

Пластинчатые теплообменники

Также называемые пластинчатыми теплообменниками, пластинчатые теплообменники состоят из нескольких тонких гофрированных пластин, соединенных вместе. Каждая пара пластин создает канал, по которому может течь одна жидкость, а пары укладываются друг на друга и соединяются болтами, пайкой или сваркой, так что между парами создается второй проход, по которому может течь другая жидкость.

Стандартная пластинчатая конструкция также доступна с некоторыми вариантами, например, с пластинчато-ребристыми или подушечными пластинчатыми теплообменниками. Пластинчато-ребристые теплообменники используют ребра или прокладки между пластинами и допускают несколько конфигураций потока и более двух потоков жидкости, проходящих через устройство. Пластинчатые теплообменники с подушками оказывают давление на пластины, чтобы повысить эффективность теплопередачи по поверхности пластины. Некоторые из других доступных типов включают пластинчатые и рамные, пластинчатые и кожуховые и спиральные пластинчатые теплообменники.

Крупный план пластинчатого теплообменника.

Изображение предоставлено withGod/Shutterstock.com

Конденсаторы, испарители и бойлеры

Бойлеры, конденсаторы и испарители представляют собой теплообменники, в которых используется двухфазный механизм теплопередачи. Как упоминалось ранее, в двухфазных теплообменниках одна или несколько жидкостей претерпевают фазовый переход в процессе теплопередачи, либо из жидкости в газ, либо из газа в жидкость.

Конденсаторы представляют собой теплообменные устройства, в которых нагретый газ или пар охлаждаются до точки конденсации, превращая газ или пар в жидкость. С другой стороны, в испарителях и котлах процесс теплопередачи изменяет текучую среду из жидкой формы в газообразную или парообразную.

Другие варианты теплообменника

Теплообменники

используются в различных областях промышленности. Следовательно, имеется несколько вариантов теплообменников, каждый из которых подходит для требований и спецификаций конкретного применения. Помимо вариантов, упомянутых выше, доступны другие типы, включая теплообменники с воздушным охлаждением, теплообменники с вентиляторным охлаждением и теплообменники с адиабатическими колесами.

Рекомендации по выбору теплообменника

Несмотря на то, что существует широкий выбор теплообменников, пригодность каждого типа (и его конструкции) для передачи тепла между жидкостями зависит от технических характеристик и требований области применения. Эти факторы в значительной степени определяют оптимальную конструкцию желаемого теплообменника и влияют на соответствующие расчеты параметров и размеров.

Некоторые из факторов, которые профессионалы отрасли должны учитывать при проектировании и выборе теплообменника, включают:

  • Тип жидкости, поток жидкости и их свойства
  • Желаемая тепловая мощность
  • Ограничения по размеру
  • Затраты

Тип жидкости, поток и свойства

Конкретный тип используемых жидкостей — например, воздух, вода, масло и т. д. — и их физические, химические и термические свойства — например, фаза, температура, кислотность или щелочность, давление и скорость потока и т. д. — помогают определить конфигурация потока и конструкция, наиболее подходящие для данного конкретного применения теплопередачи.

Например, если речь идет о агрессивных, высокотемпературных средах или жидкостях под высоким давлением, конструкция теплообменника должна выдерживать высокие нагрузки в течение всего процесса нагрева или охлаждения. Одним из способов выполнения этих требований является выбор конструкционных материалов, обладающих желаемыми свойствами: графитовые теплообменники обладают высокой теплопроводностью и коррозионной стойкостью, керамические теплообменники могут выдерживать температуры выше, чем температуры плавления многих широко используемых металлов, а пластиковые теплообменники обеспечивают недорогая альтернатива, сохраняющая умеренную степень коррозионной стойкости и теплопроводности.

Керамический теплообменник

Изображение предоставлено CG Thermal

Другой метод заключается в выборе конструкции, подходящей для свойств жидкости: пластинчатые теплообменники способны работать с жидкостями от низкого до среднего давления, но с более высокими скоростями потока, чем другие типы теплообменников, а двухфазные теплообменники необходимы при работе с жидкостями, которые требуют фазового перехода на протяжении всего процесса теплопередачи. Другие свойства жидкости и потока жидкости, которые специалисты отрасли могут учитывать при выборе теплообменника, включают вязкость жидкости, характеристики загрязнения, содержание твердых частиц и наличие водорастворимых соединений.

Тепловые выходы

Тепловая мощность теплообменника относится к количеству тепла, передаваемого между жидкостями, и соответствующему изменению температуры в конце процесса теплопередачи. Перенос тепла внутри теплообменника приводит к изменению температуры обеих жидкостей, понижая температуру одной жидкости по мере отвода тепла и повышая температуру другой жидкости по мере добавления тепла. Желаемая тепловая мощность и скорость теплопередачи помогают определить оптимальный тип и конструкцию теплообменника, поскольку некоторые конструкции теплообменников обеспечивают более высокую скорость теплопередачи и могут выдерживать более высокие температуры, чем другие конструкции, хотя и по более высокой цене.

Ограничения по размеру

После выбора оптимального типа и конструкции теплообменника распространенной ошибкой является покупка слишком большого для данного физического пространства. Часто более разумно приобрести теплообменное устройство такого размера, который оставляет место для дальнейшего расширения или добавления, а не выбирать устройство, которое полностью охватывает пространство. Для приложений с ограниченным пространством, например, в самолетах или автомобилях, компактные теплообменники обеспечивают высокую эффективность теплопередачи в более компактных и легких решениях. Имеются несколько вариантов этих теплообменных устройств, характеризующихся высоким отношением площади поверхности теплопередачи к объему, включая компактные пластинчатые теплообменники. Как правило, эти устройства имеют отношение ≥700 м 2 / м 3 для систем преобразования газа в газ и ≥400 м 2 / м 3 для процессов преобразования жидкости в газ.

Затраты

В стоимость теплообменника входит не только начальная цена оборудования, но и затраты на установку, эксплуатацию и техническое обслуживание в течение всего срока службы устройства. Несмотря на то, что необходимо выбрать теплообменник, который эффективно соответствует требованиям приложений, также важно помнить об общих затратах на выбранный теплообменник, чтобы лучше определить, стоит ли устройство инвестиций. Например, изначально дорогой, но более прочный теплообменник может привести к снижению затрат на техническое обслуживание и, следовательно, к меньшим общим затратам в течение нескольких лет, в то время как более дешевый теплообменник может быть изначально менее дорогим, но требовать нескольких ремонтов и замен. в тот же период времени.

Оптимизация дизайна

Проектирование оптимального теплообменника для данного применения (с конкретными спецификациями и требованиями, как указано выше) включает определение изменения температуры жидкостей, коэффициента теплопередачи и конструкции теплообменника и соотнесение их со скоростью теплопередачи. . Две основные проблемы, возникающие при достижении этой цели, — расчет номинала и размера устройства.

Рейтинг относится к расчету тепловой эффективности (т. е. КПД) теплообменника данной конструкции и размера, включая скорость теплопередачи, количество тепла, передаваемого между жидкостями, и соответствующее изменение их температуры, а также общее падение давления на устройстве. Под определением размеров понимается расчет требуемых общих размеров теплообменника (т. е. площади поверхности, доступной для использования в процессе теплопередачи), включая длину, ширину, высоту, толщину, количество компонентов, геометрию компонентов и их расположение, и т. д., для приложения с заданными технологическими спецификациями и требованиями. Конструктивные характеристики теплообменника, например, конфигурация потока, материал, элементы конструкции и геометрия и т. д., влияют как на номинальные параметры, так и на расчеты размеров. В идеале, оптимальная конструкция теплообменника для применения находит баланс (с коэффициентами, оптимизированными в соответствии с указаниями проектировщика) между номиналом и размером, который удовлетворяет спецификациям и требованиям процесса при минимально необходимых затратах.

Применение теплообменников

Теплообменники — это устройства, используемые в промышленности как для нагрева, так и для охлаждения. Доступны несколько вариантов теплообменников, которые находят применение в различных отраслях промышленности, в том числе:

  • Теплообменники ASME
  • Автомобильные теплообменники (как правило, автомобильные радиаторы)
  • Теплообменники пивоваренного завода
  • Химические теплообменники
  • Криогенные теплообменники
  • Морские теплообменники
  • Теплообменники для производства электроэнергии
  • Холодильные теплообменники

В приведенной ниже таблице 1 указаны некоторые распространенные отрасли и области применения ранее упомянутых типов теплообменников.

Таблица 1 – Отрасли и области применения теплообменников по типу

Тип теплообменника

Общие отрасли и приложения

Кожух и трубка

  • Переработка нефти
  • Предварительный подогрев
  • Масляное охлаждение
  • Производство пара
  • Рекуперация тепла продувки котла
  • Системы улавливания паров
  • Промышленные системы окраски

Двойная труба

  • Промышленные процессы охлаждения
  • Требования к малой площади теплопередачи

Пластина

  • Криогенный
  • Пищевая промышленность
  • Химическая обработка
  • Печи
  • Водяное охлаждение с замкнутого контура на разомкнутый

Конденсаторы

  • Процессы дистилляции и очистки
  • Электростанции
  • Холодильное оборудование
  • ОВКВ
  • Химическая обработка

Испарители/бойлеры

  • Процессы дистилляции и очистки
  • Паровозы
  • Холодильное оборудование
  • ОВКВ

С воздушным/вентиляторным охлаждением

  • Ограниченный доступ к охлаждающей воде
  • Химические и нефтеперерабатывающие заводы
  • Двигатели
  • Электростанции

Адиабатическое колесо

  • Химическая и нефтехимическая переработка
  • Нефтеперерабатывающие заводы
  • Пищевая промышленность и пастеризация
  • Производство электроэнергии
  • Криогеника
  • ОВКВ
  • Аэрокосмическая отрасль

Компактный

  • Ограниченное пространство (например, самолеты и автомобили)
  • Масляное охлаждение
  • Автомобилестроение
  • Криогеника
  • Охлаждение электроники

Резюме

В этом руководстве представлены основные сведения о теплообменниках, доступных конструкциях и типах, их применении и соображениях по использованию. Дополнительную информацию о покупке теплообменников можно найти в Руководстве по покупке теплообменников Thomas.

Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим руководствам и официальным документам Thomas или посетите Платформу поиска поставщиков Thomas, где вы найдете информацию о более чем 500 000 коммерческих и промышленных поставщиков.

Источники
  1. https://www.engr.mun.ca/~yuri/Courses/MechanicalSystems/HeatExchangers.pdf
  2. http://sky.kiau.ac.ir
  3. http://web.mit.edu/16.unified/www/SPRING/propulsion/notes/node131.html
  4. http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node30.html
  5. https://www.thomasnet.com/knowledge/white-paper/speciality-heat-exchangers-101
  6. https://www.livescience.com/50833-zeroth-law-thermodynamics.html
  7. https://courses.lumenlearning.com/introchem/chapter/the-three-laws-of-thermodynamics/
  8. https://chem.libretexts. org
  9. http://physicalworld.org
  10. https://link.springer.com
  11. https://thefreeanswer.com/question/regenerative-heat-exchanger-static-type-regenerative-heat-exchanger-differ-dynamic-type/
  12. http://hedhme.com
  13. https://www.kau.edu.sa/Files/0052880/Subjects/GuideLinesAndPracticeForThermalDesignOfHeatExchangersN2.pdf
  14. https://www.scribd.com/doc/132/Boilers-Evaporators-Condensers-Kakac
  15. https://www.hpprocess.com/processors/
  16. https://www.sigmathermal.com/heat-exchangers-for-thermal-fluid-systems/

Прочие теплообменники Артикул

  • Все о теплообменниках вода-вода: что нужно знать
  • Все о печных теплообменниках — что нужно знать
  • Все о теплообменниках «вода-воздух» — что нужно знать
  • Все о теплообменниках воздух-воздух — что вам нужно знать
  • Все о кожухотрубчатых теплообменниках — что нужно знать
  • Все о пластинчатых теплообменниках — что нужно знать
  • Все о двухтрубных теплообменниках — что нужно знать

Больше из технологического оборудования

4 Типы теплообменников

  • Ремонт
  • Услуги

Вы когда-нибудь ехали по шоссе и видели дым, поднимающийся из дымовой трубы? Правда в том, что весь этот дым — потраченная впустую энергия, которую можно было бы использовать для другой цели. Для этого существуют теплообменники. Теплообменник позволяет теплу от жидкости (жидкости или газа) проходить через вторую жидкость, при этом они никогда не вступают в прямой контакт друг с другом. Например, отопительная печь сжигает природный газ, который переносится по трубам над водой. Если бы газ и вода вступили в непосредственный контакт, теплообмен прекратился бы, и вода никогда бы не прогрелась. Несмотря на то, что все теплообменники выполняют одну и ту же функцию, существуют разные типы, которые имеют разные области применения. Изучение этих различных теплообменников поможет вам определить, какое оборудование подходит для вашего бизнеса. Давайте рассмотрим 4 типа теплообменников и их применение ниже:

1.

Двухтрубные теплообменники:

В двухтрубных теплообменниках используется так называемая труба внутри трубной конструкции. Есть две трубы, одна из которых встроена в другую. Как и в приведенном выше примере, одна жидкость течет по внутренней трубе, а вторая жидкость обтекает первую жидкость во внешней трубе. Этот тип теплообменника известен как самый простой и доступный из всех. Его размер делает его идеальным для ограниченного пространства, что обеспечивает дополнительную гибкость в организации производственного процесса.

2. Кожухотрубные теплообменники:

Из всех типов теплообменников кожухотрубные теплообменники являются наиболее универсальными. Кожухотрубный теплообменник состоит из нескольких труб, размещенных внутри цилиндрической оболочки. Популярная конструкция этого типа теплообменника допускает широкий диапазон давлений и температур. Если вам необходимо охладить или нагреть большое количество жидкостей или газов, можно рассмотреть применение кожухотрубного теплообменника. Несмотря на меньший размер по сравнению с некоторыми другими типами, кожухотрубный теплообменник легко разбирается, что упрощает очистку и ремонт.

Просмотреть наш ассортимент оборудования из нержавеющей стали

Просмотреть продукты

3. Теплообменники типа «труба в трубе»:

Подобно другим типам теплообменников, теплообменник типа «труба в трубе» состоит из двух труб, одна для каждой жидкости. Однако трубки скручены вместе, образуя внешний и внутренний узор. Применение трубки в дизайне трубки может быть довольно творческим. Поскольку трубки скручены вместе, большинство конструкций этого типа компактны. Применение трубчатых теплообменников связано с высокими температурами и высоким давлением. Поскольку он работает с более высокой выходной мощностью, теплообменник типа «труба в трубе» имеет большую эффективность.

4. Пластинчатые теплообменники:

Хотя все рассмотренные до сих пор типы теплообменников имеют одинаковую конструкцию, пластинчатый теплообменник является исключением. Металлические пластины используются для передачи тепла между двумя жидкостями. Пластина представляет собой металлическую оболочку с промежутками внутри каждой пластины, которые действуют как коридоры для прохождения жидкостей. Пластинчатый теплообменник имеет большую площадь поверхности, контактирующую с жидкостью, поэтому он имеет лучшую скорость теплопередачи по сравнению со всеми другими типами. Хотя пластинчатые теплообменники могут быть более дорогими, эффективность, обеспечиваемая их конструкцией, является большим плюсом. Этот тип теплообменника лучше всего использовать в таких местах, как электростанции, из-за его долговечности и низкой скорости ремонта.

Zwirner Equipment предлагает восстановленные теплообменники из нержавеющей стали для вашего бизнеса

Наша цель Zwirner Equipment — предоставить вам высококачественное оборудование из нержавеющей стали, которое поможет обеспечить бесперебойную и эффективную работу вашего предприятия.


Learn more