Содержание, карта.

Площадь это длина умноженная на ширину


Периметр, площадь и объем

Данный материал содержит геометрические фигуры с измерениями. Приведённые измерения являются приблизительными и могут не совпадать с измерениями в реальной жизни.

Периметр геометрической фигуры

Периметр геометрической фигуры — это сумма всех её сторон. Чтобы вычислить периметр, нужно измерить каждую сторону и сложить результаты измерений.

Вычислим периметр следующей фигуры:

Это прямоугольник. Детальнее мы поговорим об этой фигуре позже. Сейчас просто вычислим периметр этого прямоугольника. Длина его равна 9 см, а ширина 4 см.

У прямоугольника противоположные стороны равны. Это видно на рисунке. Если длина равна 9 см, а ширина равна 4 см, то противоположные стороны будут равны 9 см и 4 см соответственно:

Найдём периметр. Для этого сложим все стороны. Складывать их можно в любом порядке, поскольку от перестановки мест слагаемых сумма не меняется. Периметр часто обозначается заглавной латинской буквой P (англ. perimeters). Тогда получим:

P = 9 см + 4 см + 9 см + 4 см = 26 см.

Поскольку у прямоугольника противоположные стороны равны, нахождение периметра записывают короче — складывают длину и ширину, и умножают её на 2, что будет означать «повторить длину и ширину два раза»

P = 2 × (9 + 4) = 18 + 8 = 26 см.

Квадрат это тот же прямоугольник, но у которого все стороны равны. Например, найдём периметр квадрата со стороной 5 см. Фразу «со стороной 5 см» нужно понимать как «длина каждой стороны квадрата равна 5 см»

Чтобы вычислить периметр, сложим все стороны:

P = 5 см + 5 см + 5 см + 5 см = 20 см

Но поскольку все стороны равны, вычисление периметра можно записать в виде произведения. Сторона квадрата равна 5 см, и таких сторон 4. Тогда эту сторону, равную 5 см нужно повторить 4 раза

P = 5 см × 4 = 20 см


Площадь геометрической фигуры

Площадь геометрической фигуры — это число, которое характеризует размер данной фигуры.

Следует уточнить, что речь в данном случае идёт о площади на плоскости. Плоскостью в геометрии называют любую плоскую поверхность, например: лист бумаги, земельный участок, поверхность стола.

Площадь измеряется в квадратных единицах. Под квадратными единицами подразумевают квадраты, стороны которых равны единице. Например, 1 квадратный сантиметр, 1 квадратный метр или 1 квадратный километр.

Измерить площадь какой-нибудь фигуры означает выяснить сколько квадратных единиц содержится в данной фигуре.

Например, площадь следующего прямоугольника равна трём квадратным сантиметрам:

Это потому что в данном прямоугольнике содержится три квадрата, каждый из которых имеет сторону, равную одному сантиметру:

Справа представлен квадрат со стороной 1 см (он в данном случае является квадратной единицей). Если посмотреть сколько раз этот квадрат входит в прямоугольник, представленный слева, то обнаружим, что он входит в него три раза.

Следующий прямоугольник имеет площадь, равную шести квадратным сантиметрам:

Это потому что в данном прямоугольнике содержится шесть квадратов, каждый из которых имеет сторону, равную одному сантиметру:

Допустим, потребовалось измерить площадь следующей комнаты:

Определимся в каких квадратах будем измерять площадь. В данном случае площадь удобно измерить в квадратных метрах:

Итак, наша задача состоит в том, чтобы определить сколько таких квадратов со стороной 1 м содержится в исходной комнате. Заполним этим квадратом всю комнату:

Видим, что квадратный метр содержится в комнате 12 раз. Значит, площадь комнаты составляет 12 квадратных метров.


Площадь прямоугольника

В предыдущем примере мы вычислили площадь комнаты, последовательно проверив сколько раз в ней содержится квадрат, сторона которого равна одному метру. Площадь составила 12 квадратных метров.

Комната представляла собой прямоугольник. Площадь прямоугольника можно вычислить перемножив его длину и ширину.

Чтобы вычислить площадь прямоугольника, нужно перемножить его длину и ширину.

Вернёмся к предыдущему примеру. Допустим, мы измерили длину комнаты рулеткой и оказалось, что длина составила 4 метра:

Теперь измерим ширину. Пусть она составила 3 метра:

Умножим длину (4 м) на ширину (3 м).

4 × 3 = 12

Как и в прошлый раз получаем двенадцать квадратных метров. Это объясняется тем, что измерив длину, мы тем самым узнаём сколько раз можно уложить в эту длину квадрат со стороной, равной одному метру. Уложим четыре квадрата в эту длину:

Затем мы определяем сколько раз можно повторить эту длину с уложенными квадратами. Это мы узнаём, измерив ширину прямоугольника:


Площадь квадрата

Квадрат это тот же прямоугольник, но у которого все стороны равны. Например, на следующем рисунке представлен квадрат со стороной 3 см. Фраза «квадрат со стороной 3 см» означает, что все стороны равны 3 см

Площадь квадрата вычисляется таким же образом, как и площадь прямоугольника — длину умножают на ширину.

Вычислим площадь квадрата со стороной 3 см. Умножим длину 3 см на ширину 3 см

3 × 3 = 9

В данном случае требовалось узнать сколько квадратов со стороной 1 см содержится в исходном квадрате. В исходном квадрате содержится девять квадратов со стороной 1 см. Действительно, так оно и есть. Квадрат со стороной 1 см, входит в исходный квадрат девять раз:

Умножив длину на ширину, мы получили выражение 3 × 3, а это есть произведение двух одинаковых множителей, каждый из которых равен 3. Иными словами выражение 3 × 3 представляет собой вторую степень числа 3. А значит процесс вычисления площади квадрата можно записать в виде степени 32.

Поэтому вторую степень числа называют квадратом числа. При вычислении второй степени числа a, человек тем самым находит площадь квадрата со стороной a. Операцию возведения числа во вторую степень по другому называют возведением в квадрат.


Обозначения

Площадь обозначается заглавной латинской буквой S (англ. Square — квадрат). Тогда площадь квадрата со стороной a см будет вычисляться по следующему правилу

S = a2

где a — длина стороны квадрата. Вторая степень указывает на то, что происходит перемножение двух одинаковых сомножителей, а именно длины и ширины. Ранее было сказано, что у квадрата все стороны равны, а значит равны длина и ширина квадрата, выраженные через букву a.

Если задача состоит в том, чтобы определить сколько квадратов стороной 1 см содержится в исходном квадрате, то в качестве единиц измерения площади нужно указывать см2. Это обозначение заменяет словосочетание «квадратный сантиметр».

Например, вычислим площадь квадрат со стороной 2 см.

Значит, квадрат со стороной 2 см, имеет площадь, равную четырём квадратным сантиметрам:

Если задача состоит в том, чтобы определить сколько квадратов со стороной 1 м содержится в исходном квадрате, то в качестве единиц измерения нужно указывать м2. Это обозначение заменяет словосочетание «квадратный метр».

Вычислим площадь квадрата со стороной 3 метра

Значит, квадрат со стороной 3 м, имеет площадь равную девяти квадратным метрам:

Аналогичные обозначения используются при вычислении площади прямоугольника. Но длина и ширина прямоугольника могут быть разными, поэтому они обозначаются через разные буквы, например a и b. Тогда площадь прямоугольника, длиной a и шириной b вычисляется по следующему правилу:

S = a × b

Как и в случае с квадратом, единицами измерения площади прямоугольника могут быть см2, м2, км2. Эти обозначения заменяют словосочетания «квадратный сантиметр», «квадратный метр», «квадратный километр» соответственно.

Например, вычислим площадь прямоугольника, длиной 6 см и шириной 3 см

Значит, прямоугольник длиной 6 см и шириной 3 см имеет площадь, равную восемнадцати квадратным сантиметрам:

В качестве единицы измерения допускается использовать словосочетание «квадратных единиц». Например, запись S = 3 кв.ед означает, что площадь квадрата или прямоугольника равна трём квадратам, каждый из которых имеет единичную сторону (1 см, 1 м или 1 км).


Перевод единиц измерения площади

Единицы измерения площади можно переводить из одной единицы измерения в другую. Рассмотрим несколько примеров:

Пример 1. Выразить 1 квадратный метр в квадратных сантиметрах.

1 квадратный метр это квадрат со стороной 1 м. То есть все четыре стороны имеют длину, равную одному метру.

Но 1 м = 100 см. Тогда все четыре стороны тоже имеют длину, равную 100 см

Вычислим новую площадь этого квадрата. Умножим длину 100 см на ширину 100 см или возведём в квадрат число 100

S = 1002 = 10 000 см2

Получается, что на один квадратный метр приходится десять тысяч квадратных сантиметров.

1 м = 10 000 см2

Это позволяет в будущем умножить любое количество квадратных метров на 10 000 и получить площадь, выраженную в квадратных сантиметрах.

Чтобы перевести квадратные метры в квадратные сантиметры, нужно количество квадратных метров умножить на 10 000.

А чтобы перевести квадратные сантиметры в квадратные метры, нужно наоборот количество квадратных сантиметров разделить на 10 000.

Например, переведём 100 000 см2 в квадратные метры. Рассуждать в этом случае можно так: «если 10 000 см2 это один квадратный метр, то сколько раз 100 000 см2 будут содержать по 10 000 см2»

100 000 см2 : 10 000 см2 = 10 м2

Другие единицы измерения можно переводить таким же образом. Например, переведём 2 км2 в квадратные метры.

Один квадратный километр это квадрат со стороной 1 км. То есть все четыре стороны имеют длину, равную одному километру. Но 1 км = 1000 м. Значит, все четыре стороны квадрата также равны 1000 м. Найдём новую площадь квадрата, выраженную в квадратных метрах. Для этого умножим длину 1000 м на ширину 1000 м или возведём в квадрат число 1000

S = 10002 = 1 000 000 м2

Получается, что на один квадратный километр приходится один миллион квадратных метров:

1 км = 1 000 000 м2

Это позволяет в будущем умножить любое количество квадратных километров на 1 000 000 и получить площадь, выраженную в квадратных метрах.

Чтобы перевести квадратные километры в квадратные метры, нужно количество квадратных километров умножить на 1 000 000.

Итак, вернёмся к нашей задаче. Требовалось перевести 2 км2 в квадратные метры. Умножим 2 км2 на 1 000 000

2 км2 × 1 000 000 = 2 000 000 м2

А чтобы перевести квадратные метры в квадратные километры, нужно наоборот количество квадратных метров разделить на 1 000 000.

Например, переведём 3 500 000 м2 в квадратные километры. Рассуждать в этом случае можно так: «если 1 000 000 м2 это один квадратный километр, то сколько раз 3 500 000 м2 будут содержать по 1 000 000 м2»

3 500 000 м2 : 1 000 000 м2 = 3,5 км2


Пример 2. Выразить 7 м2 в квадратных сантиметрах.

Умножим 7 м2 на 10 000

7 м2 = 7 м2 × 10 000 = 70 000 см2


Пример 3. Выразить 5 м2 13 см2 в квадратных сантиметрах.

5 м2 13 см2 = 5 м2 × 10 000 + 13 см2 = 50 013 см2


Пример 4. Выразить 550 000 см2 в квадратных метрах.

Узнаем сколько раз 550 000 см2 содержит по 10 000 см2. Для этого разделим 550 000 см2 на 10 000 см2

550 000 см2 : 10 000 см2 = 55 м2


Пример 5. Выразить 7 км2 в квадратных метрах.

Умножим 7 км2 на 1 000 000

7 км2 × 1 000 000 = 7 000 000 м2


Пример 6. Выразить 8 500 000 м2 в квадратных километрах.

Узнаем сколько раз 8 500 000 м2 содержит по 1 000 000 м2. Для этого разделим 8 500 000 м 2 на 1 000 000 м2

8 500 000 м2 × 1 000 000 м2 = 8,5 км2


Единицы измерения площади земельных участков

Площади небольших земельных участков удобно измерять в квадратных метрах.

Площади более крупных земельных участков измеряются в арах и гектарах.

Ар (сокращённо: a) — это площадь равная ста квадратным метрам (100 м2). В виду частого распространения такой площади (100 м2) она стала использоваться, как отдельная единица измерения.

Например, если сказано что площадь какого-нибудь поля составляет 3 а, то нужно понимать, что это три квадрата площадью 100 м2 каждый, то есть:

3 а = 100 м2 × 3 = 300 м2

В народе ар часто называют соткой, поскольку ар равен квадрату, площадью 100 м2. Примеры:

1 сотка = 100 м2

2 сотки = 200 м2

10 соток = 1000 м2

Гектар (сокращенно: га) — это площадь, равная 10 000 м2. Например, если сказано что площадь какого-нибудь леса составляет 20 гектаров, то нужно понимать, что это двадцать квадратов площадью 10 000 м2 каждый, то есть:

20 га = 10 000 м2 × 20 = 200 000 м2


Прямоугольный параллелепипед и куб

Прямоугольный параллелепипед — это геометрическая фигура, состоящая из грáней, рёбер и вершин. На рисунке показан прямоугольный параллелепипед:

Желтым цветом показаны грáни параллелепипеда, чёрным цветом — рёбра, красным — вершины.

Прямоугольный параллелепипед обладает длиной, шириной и высотой. На рисунке показано где длина, ширина и высота:

Параллелепипед, у которого длина, ширина и высота равны между собой, называется кубом. На рисунке показан куб:


Объём геометрической фигуры

Объём геометрической фигуры — это число, которое характеризует вместимость данной фигуры.

Объём измеряется в кубических единицах. Под кубическими единицами подразумевают кубы длиной 1, шириной 1 и высотой 1. Например, 1 кубический сантиметр или 1 кубический метр.

Измерить объём какой-нибудь фигуры означает выяснить сколько  кубических единиц вмещается в данную фигуру.

Например, объём следующего прямоугольного параллелепипеда равен двенадцати кубическим сантиметрам:

Это потому что в данный параллелепипед вмещается двенадцать кубов длиной 1 см, шириной 1 см и высотой 1 см:

Объём обозначается заглавной латинской буквой V. Одна из единиц измерения объема это кубический сантиметр (см3). Тогда объём V рассмотренного нами параллелепипеда равен 12 см3

V = 12 см3

Объём любого параллелепипеда вычисляют следующим образом: перемножают его длину, ширину и высоту .

Объём прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

V = abc

где, a — длина, b — ширина, c — высота

Так, в предыдущем примере мы визуально определили, что объём параллелепипеда равен 12 см3. Но можно измерить длину, ширину и высоту данного параллелепипеда и перемножить результаты измерений. Мы получим тот же результат

Объём куба вычисляется таким же образом, как и объём прямоугольного параллелепипеда — перемножают длину, ширину и высоту.

Например, вычислим объём куба, длина которого 3 см. У куба длина, ширина и высота равны между собой. Если длина равна 3 см, то равны этим же трём сантиметрам ширина и высота куба:

Перемножаем длину, ширину, высоту и получаем объём, равный двадцати семи кубическим сантиметрам:

V = 3 × 3 × 3 = 27 см³

Действительно, в исходный куб вмещается 27 кубиков длиной 1 см

При вычислении объёма данного куба мы перемножили длину, ширину и высоту. Получилось произведение 3 × 3 × 3. Это есть произведение трёх сомножителей, каждый из которых равен 3. Иными словами, произведение 3 × 3 × 3 является третьей степенью числа 3 и может быть записано в виде 33.

V = 33 = 27 см3

Поэтому третью степень числа называют кубом числа. При вычислении третьей степени числа a, человек тем самым находит объём куба, длиной a. Операцию возведения числа в третью степень по другому называют возведением в куб.

Таким образом, объём куба вычисляется по следующему правилу:

V = a3

Где a — длина куба.


Кубический дециметр. Кубический метр

Не все объекты нашего мира удобно измерять в кубических сантиметрах. Например, объём комнаты или дома удобнее измерять в кубических метрах (м3). А объём бака, аквариума или холодильника удобнее измерять в кубических дециметрах (дм3).

Другое название одного кубического дециметра – один литр.

1 дм3 = 1 литр


Перевод единиц измерения объёма

Единицы измерения объёма можно переводить из одной единицы измерения в другую. Рассмотрим несколько примеров:

Пример 1. Выразить 1 кубический метр в кубических сантиметрах.

Один кубический метр это куб со стороной 1 м. Длина, ширина и высота этого куба равны одному метру.

Но 1 м = 100 см. Значит, длина, ширина и высота тоже равны 100 см

Вычислим новый объём куба, выраженный в кубических сантиметрах. Для этого перемножим его длину, ширину и высоту. Либо возведём число 100 в куб:

V = 1003 = 1 000 000 см3

Получается, что на один кубический метр приходится один миллион кубических сантиметров:

1 м = 1 000 000 см3

Это позволяет в будущем умножить любое количество кубических метров на 1 000 000 и получить объём, выраженный в кубических сантиметрах.

Чтобы перевести кубические метры в кубические сантиметры, нужно количество кубических метров умножить на 1 000 000.

А чтобы перевести кубические сантиметры в кубические метры, нужно наоборот количество кубических сантиметров разделить на 1 000 000.

Например, переведём 300 000 000 см3 в кубические метры. Рассуждать в этом случае можно так: «если 1 000 000 см3 это один кубический метр, то сколько раз 300 000 000 см3 будут содержать по 1 000 000 см3»

300 000 000 см3 : 1 000 000 см3 = 300 м3


Пример 2. Выразить 3 м3 в кубических сантиметрах.

Умножим 3 м3 на 1 000 000

3 м3 × 1 000 000 = 3 000 000 см3


Пример 3. Выразить 60 000 000 см3 в кубических метрах.

Узнаем сколько раз 60 000 000 см3 содержит по 1 000 000 см3. Для этого разделим 60 000 000 см3 на 1 000 000 см3

60 000 000 см3 : 1 000 000 см3 = 60 м3


Вместимость бака, банки или канистры измеряют в литрах. Литр это тоже единица измерения объема. Один литр равен одному кубическому дециметру.

1 литр = 1 дм3

Например, если вместимость банки составляет 1 литр, это значит что объём этой банки составляет 1 дм3. При решении некоторых задач может быть полезным умение переводить литры в кубические дециметры и наоборот. Рассмотрим несколько примеров.

Пример 1. Перевести 5 литров в кубические дециметры.

Чтобы перевести 5 литров в кубические дециметры, достаточно умножить 5 на 1

5 л × 1 = 5 дм3


Пример 2. Перевести 6000 литров в кубические метры.

Шесть тысяч литров это шесть тысяч кубических дециметров:

6000 л × 1 = 6000 дм3

Теперь переведём эти 6000 дм3 в кубические метры.

Длина, ширина и высота одного кубического метра равны 10 дм

Если вычислить объём этого куба в дециметрах, то получим 1000 дм3

V = 103= 1000 дм3

Получается, что одна тысяча кубических дециметров соответствует одному кубическому метру. А чтобы определить сколько кубических метров соответствуют шести тысячамл кубических дециметров, нужно узнать сколько раз 6 000 дм3 содержит по 1 000 дм3

6 000 дм3 : 1 000 дм3 = 6 м3

Значит, 6000 л = 6 м3.


Таблица квадратов

В жизни часто приходиться находить площади различных квадратов. Для этого каждый раз требуется возводить исходное число во вторую степень.

Квадраты первых 99 натуральных чисел уже вычислены и занесены в специальную таблицу, называемую таблицей квадратов.

Первая строка данной таблицы (цифры от 0 до 9) это единицы исходного числа, а первый столбец (цифры от 1 до 9) это десятки исходного числа.

Например, найдём квадрат числа 24 по данной таблице. Число 24 состоит из цифр 2 и 4. Точнее, число 24 состоит из двух десятков и четырёх единиц.

Итак, выбираем цифру 2 в первом столбце таблицы (столбце десятков), а цифру 4 выбираем в первой строке (строке единиц). Затем, двигаясь вправо от цифры 2 и вниз от цифры 4, найдём точку пересечения. В результате окажемся на позиции, где располагается число 576. Значит, квадрат числа 24 есть число 576

242 = 576


Таблица кубов

Как и в ситуации с квадратами, кубы первых 99 натуральных чисел уже вычислены и занесены в таблицу, называемую таблицей кубов.

Куб числа по таблице определяется таким же образом, как и квадрат числа. Например, найдём куб числа 35. Это число состоит из цифр 3 и 5. Выбираем цифру 3 в первом столбце таблицы (столбце десятков), а цифру 5 выбираем в первой строке (строке единиц). Двигаясь вправо от цифры 3 и вниз от цифры 5, найдём точку пересечения. В результате окажемся на позиции, где располагается число 42875. Значит, куб числа 35 есть число 42875.

353 = 42875


Задания для самостоятельного решения

Задача 1. Длина прямоугольника составляет 6 см, а ширина 2 см. Найдите периметр.

Решение

P = 2(a + b)

a = 6, b = 2
P = 2(6 + 2) = 12 + 4 = 16 см

Ответ: периметр прямоугольника равен 16 см.

Задача 2. Длина прямоугольника составляет 6 см, а ширина 2 см. Найдите площадь.

Решение

S = ab
a = 6, b = 2
S = 6 × 2 = 12 см2

Ответ: площадь равна 12 см2.

Задача 3. Площадь прямоугольника составляет 12 см2. Длина составляет 6 см. Найдите ширину прямоугольника.

Решение

S = ab
S = 12, a = 6, b = x
12 = 6 × x
x = 2

Ответ: ширина прямоугольника составляет 2 см.

Задача 4. Вычислите площадь квадрата со стороной 8 см

Решение

S = a2
a = 8
S = 82 = 64 см2
Ответ: площадь квадрата со стороной 8 см равна 64 см2

Задача 5. Вычислите объем прямоугольного параллелепипеда, длина которого 6 см, ширина 4 см, высота 3 см.

Решение

V = abc
a = 6, b = 4, c = 3
V = 6 × 4 × 3 = 72 см3.

Ответ: объем прямоугольного параллелепипеда, длина которого 6 см, ширина 4 см, высота 3 см равен 72 см3

Задача 6. Объем прямоугольного параллелепипеда составляет 200 см3. Найдите высоту параллелепипеда, если его длина равна 10 см, а ширина 5 см

Решение

V = abc
V = 200, a = 10, b = 5, c = x
200 = 10 × 5 × x
200 = 50x
x = 4

Ответ: высота прямоугольного параллелепипеда равна 4 см.

Задача 7. Площади земельного участка, засеянные пшеницей и льном, пропорциональны числам 4 и 5. На какой площади засеяна пшеница, если под льном засеяно 15 га

Решение

Число 4 отражает площадь, засеянную пшеницей. А число 5 отражает площадь, засеянную льном.
Сказано что площади, засеянные пшеницей и льном пропорциональны этим числам.

Проще говоря, во сколько раз изменяются числа 4 или 5, во сколько же раз изменится и площадь, которая засеяна пшеницей или льном. Льном засеяно 15 га. То есть число 5, которое отражает площадь, засеянную льном, изменилось в 3 раза.

Тогда число 4, которое отражает площадь засеянную пшеницей, нужно увеличить в три раза

4 × 3 = 12 га

Ответ: пшеницей засеяно 12 га.

Задача 8. Длина зернохранилища 42 м, ширина составляет длины, а высота – 0,1 длины. Определите сколько тонн зерна вмещает зернохранилище, если 1 м3 его весит 740 кг.

Решение

a — длина
b — ширина
c — высота

a = 42 м
b = м
c = 42 × 0,1 = 4,2 м

Определим объем зернохранилища:

V = abc = 42 × 30 × 4,2 = 5292 м3

Определите сколько тонн зерна вмещает зернохранилище:

5292 × 740 = 3916080 кг

Переведём килограммы в тонны:

Ответ: зернохранилище вмещает 3916,08 тонн зерна.

Задача 9. 12. Бассейн имеет форму прямоугольного параллелепипеда, длина которого равна 5,8 м, а ширина – 3,5 м. Две трубы наполняют его водой в течение 13 ч 32 мин., причём через одну из них вливается 25 л/мин, а через вторую – 0,75 этого количества. Определите высоту (глубину) бассейна.

Решение

Определим сколько литров в минуту вливается через вторую трубу:

25 л/мин × 0,75 = 18,75 л/мин

Определим сколько литров в минуту вливается в бассейн через обе трубы:

25 л/мин + 18,75 л/мин = 43,75 л/мин

Определим сколько литров воды будет залито в бассейн за 13 ч 32 мин

43,75 × 13 ч 32 мин = 43,75 × 812 мин = 35 525 л

1 л = 1 дм3

35 525 л = 35 525 дм3

Переведём кубические дециметры в кубические метры. Это позволит вычислит объем бассейна:

35 525 дм3 : 1000 дм3 = 35,525 м3

Зная объём бассейна можно вычислить высоту бассейна. Подставим в буквенное уравнение V=abc имеющиеся у нас значения. Тогда получим:

V = 35,525
a = 5.8
b = 3.5
c = x

35,525 = 5,8 × 3,5 × x
35,525 = 20,3 × x
x = 1,75 м

с = 1,75

Ответ: высота (глубина) бассейна составляет 1,75 м.


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Навигация по записям

Площади фигур - Сайт учителя математики

Площади многоугольников
Друзья мои, легко найти
S параллелограмма:
Вы помножьте а на b
И на синус гамма.
(S=absin)
S трапеции ты знаешь.
Посчитай, я подожду.
Полусумму оснований
Ты умножь на высоту.
(S = (а+b/2)h)
Площадь треугольника
Знать, конечно, надо:
Мы умножим а на аш
И разделим на два.
С понятием площади нам приходиться сталкиваться ежедневно. Для того, чтобы постелить новую плитку в вашей квартире вам нужно приобрести определенное ее количество, которое будет зависеть от площади вашей комнаты. Размер земельного участка вашего дома также будет характеризоваться площадью. Обычно люди забывают как найти площадь более сложных фигур, таких как треугольник, трапеция, или круг, но если вы настолько закрутились в жизни, что забыли как найти площадь прямоугольника, то мы вам это напомним в данной статье.

Вычисление площади прямоугольника.
Площадь измеряют в квадратных единицах, миллиметрах, сантиметрах, метрах и так далее. Сколько квадратов в данном прямоугольнике?


Совершенно верно. В нем пятнадцать квадратных единиц. Значит для того, чтобы найти площадь прямоугольника нужно его ширину умножить на длину. В виде формулы это можно представить как S = h*b, где S-площадь, h-высота, b-ширина. Или так:
площадь прямоугольника = ширина х длину.
Вот еще несколько примеров определения площади прямоугольника.

Площадь = Длина х Ширина
Площадь = 9 х 5 = 45 квадратных единиц
Площадь = Длина х Ширина
Площадь = 8 х 6 = 48 квадратных единиц


Единицы измерения площади.
Как было сказано выше площадь измеряется в квадратных единицах. Они будут различными в зависимости от размера измеряемой площади. Конечно, можно измерять все в одних единицах, но в результате мы будем получать либо слишком маленькие, либо слишком большие для восприятия цифры.

 

Пример Единица измерения Единица площади 
Ноготь на пальце Миллиметр  мм2
Лист бумаги  Сантиметр  см2
Комната  Метр  м2
Город  Километр  км2


Площадь земельных участков еще часто указывают в сотках. Одна сотка — это площадь участка размером 10х10 метров, которая составляет 100 квадратных метров и поэтому называется соткой. Вот несколько характерных примеров размеров, которые может иметь земельный участок площадью 15 соток.

 

Ширина 15, длина 100 Площадь 1500 м2 Площадь 15 соток
Ширина 20, длина 75 Площадь 1500 м2 Площадь 15 соток
Ширина 25, длина 60 Площадь 1500 м2 Площадь 15 соток
ширина 30, длина 50 Площадь 1500 м2 Площадь 15 соток

 

В будущем, если вы вдруг забудете как найти площадь прямоугольника, то вспоминайте очень старый анекдот, когда дедушка спрашивает у пятиклассника как найти площадь Ленина, а тот отвечает что нужно ширину Ленина умножить на длину Ленина.




Иногда в быту людям приходится вспоминать давно забытые школьные знания. Например, когда при очередном ремонте в доме или квартире нужно определить количество материала для какой-то поверхности треугольной формы. Когда-то вы знали это на зубок, но теперь судорожно пытаетесь вспомнить как найти площадь треугольника?

Не переживайте! Это нормально, когда человеческий мозг перекладывает уже давно не используемую информацию в удаленные уголки, из которых ее не вседа получается быстро извлечь. А чтобы вы не мучились этим вопросом, мы напомним как найти площадь треугольника различными методами в данной статье.

Как известно, треугольником называется плоская фигура, образованная пересекающимися прямыми. Точки пересечения называют вершинами, а противоположные им отрезки прямых ребрами. Встречаются частные виды треугольников, такие как прямоугольный, равнобедренный и равносторонний треугольники.

С самом общем случае площадь треугольника находится как половина произведения длина основания треугольника на величину высоты, опущенной на данное основание с противоположной вершины. Записывается это следующим образом S = 1/2*b*h, где S-площадь треугольника, b-длина одной из сторон треугольника, h-высота, опущенная к этой стороне.

Данную формулу можно хорошо понять, запомнить и вспоминать по частному случаю нахождения площади прямоугольного треугольника. Посмотрите внимательно на рисунок.


Как видите площадь такого треугольника легко определяется как половина площади воображаемого прямоугольника образованного из двух таких треугольников. Для непрямоугольного треугольника вы как бы добавляете два треугольника до образования прямоугольника и находите его площадь.
Если известна длина трех сторон треугольника, то его площадь может быть найдена по формуле Герона. Для упрощения ее использования вводят новую величину, называемую полупериметром, который находиться как половина суммы всех сторон треугольника и записывается в виде P = (a+b+c)/2, где P-полупериметр, а,b,с-стороны (ребра) треугольника. После нахождения полупериметра формула Герона принимает следующий вид: S = √(p(p-a)(p-b)(p-c)), где S — площадь треугольника, √-квадратный корень, p-полупериметр, a,b,c-стороны (ребра) треугольника.

Существуют также другие формулы того, как найти площадь треугольника, но мы не станем их здесь приводить, так как в них используются такие данные как синусы углов и которые больше подходят для задач по математической практике, чем по бытовому использованию.


Как найти площадь трапеции? Данная задача в быту возникает очень редко, но иногда оказывается необходимой, к примеру, чтобы найти площадь комнаты в форме трапеции, которые все чаще применяют при строительстве современных квартир, или в дизайн-проектах по ремонту.

Трапеция — это геометрическая фигура, образованная четырьмя пересекающимися отрезками, два из которых параллельны между собой и называются основаниями трапеции. Два других отрезка называются сторонами трапеции. Кроме того, в дальнейшем нам пригодится еще одно определение. Это средняя линия трапеции, которая представляет собой отрезок, соединяющий середины боковых сторон и высота трапеции, которая равна расстоянию между основаниями.

Как и у треугольников, у трапеция есть частные виды в виде равнобедренной (равнобокой) трапеции, у которой длина боковых сторон одинаковы и прямоугольной трапеции, у которой одна из сторон образует с основаниями прямой угол.

Трапеции обладают некоторыми интересными свойствами:

  1. Средняя линия трапеции равна полусумме оснований и параллельна им.
  2. У равнобедренных трапеций боковые стороны и углы которые они образуют с основаниями равны.
  3. Середины диагоналей трапеции и точка пересечения ее диагоналей находятся на одной прямой.
  4. Если сумма боковых сторон трапеции равна сумме оснований, то в нее можно вписать круг
  5. Если сумма углов, образованных сторонами трапеции у любого ее основания равна 90, то длина отрезка, соединяющего середины оснований, равна их полуразности.
  6. Равнобедренную трапецию можно описать окружностью. И наоборот. Если в трапеция вписывается в окружность, значит она равнобедренная.
  7. Отрезок, проходящий через середины оснований равнобедренной трапеции будет перпендикулярен ее основаниям и представляет собой ось симетрии.

Как найти площадь трапеции.
Площадь трапеции будет равна полусумме ее оснований, умноженной на высоту. В виде формулы это записывается как S = ((a+b)*h)/2, где S-площадь трапеции, a,b-длина каждого из оснований трапеции, h-высота трапеции.

Понять и запомнить эту формулу можно следующим образом. Как следует из рисунка ниже трапецию с использованием средней линии можно преобразовать в прямоугольник, длина которого и будет равна полусумме оснований.

Можно также любую трапецию разложить на более простые фигуры: прямоугольник и один, или два треугольника и если вам так проще, то найти площадь трапеции, как сумму площадей составляющих ее фигур.

Есть еще одна простая формула для подсчета ее площади. Согласно ней площадь трапеции равна произведению ее средней линии на высоту трапеции и записывается в виде: S = m*h, где S-площадь, m-длина средней линии, h-высота трапеции. Данная формула больше подходит для задач по математике, чем для бытовых задач, так как в реальных условиях вам не будет известна длина средней линии без предварительных расчетов. А известны вам будут только длины оснований и боковых сторон.

В этом случае площадь трапеции может быть найдена по формуле: S = ((a+b)/2)*√c2-((b-a)2+c2-d2/2(b-a))2, где S-площадь, a,b-основания, c,d-боковые стороны трапеции.

Существуют еще несколько способов того, как найти площади трапеции. Но, они примерно также неудобны как и последняя формула, а значит не имеет смысла на них останавливаться. Поэтому, рекомендуем вам пользоваться первой формулой из статьи и желаем всегда получать точные результаты.



 
 Мы знаем, что окружность представляет собой множество точек равноудаленных от заданной точки и лежащих с данной точкой, а также между собой в одной плоскости. Точка, от которой равноудалены другие точки называется центром окружности.

Расстояние от любой точки окружности до его центра называется радиусом окружности и обычно обозначается заглавной английской буквой R.
Расстояние между двумя противолежащими точками, у которых соединяющий их отрезок проходит через центр окружности, называется диаметром окружности и по общепринятым стандартам обозначается английской заглавной буквой D.

Кругом называется часть плосткости, ограниченная окружностью.

Исходя из определения окружности можно понять, что диаметр равен двум радиусм окружности D=2R, а радиус наоборот равен половине диаметра R=D/2.

После того, как были определены все свойства и ключевые характеристики кругов и окружностей можно приступить к определению площади круга, для чего может быть использована следующая формула:

S = πR2

где, S - площадь круга, π - число пи (о нем мы расскажем ниже), R - радиус окружности.

π=3,14.

 

Формулу площади круга можно преобразовать с учетом того, что радиус равен полудиаметру круга. В этом случае она примет вид:

 

D = πD2/4

где, S - площадь круга, π - число пи, D - диаметр окружности.

Сделать площадь прямоугольника. Ввод данных в калькулятор для вычисления площади прямоугольника

С таким понятием, как площадь, нам приходится сталкиваться в своей жизни повседневно. Так, например, при строительстве дома ее нужно знать для того, чтобы рассчитать количество необходимого материала. Размер садового участка также будет характеризоваться площадью. Даже ремонт в квартире невозможно сделать без этого определения. Поэтому вопрос, как найти площадь прямоугольника, на нашем встает очень часто и является важным не только для школьников.

Для тех, кто не знает, прямоугольник - это плоская фигура, у которой противоположные стороны равны, а углы составляют 90о. Для обозначения площади в математике используют английскую букву S. Ее измеряют в квадратных единицах: метрах, сантиметрах и так далее.

Теперь попытаемся дать подробный ответ на вопрос, как найти площадь прямоугольника. Существует несколько способов определения этой величины. Наиболее часто мы сталкиваемся со способом определения площади с помощью ширины и длины.

Возьмем прямоугольник с шириной b и длиной k. Для вычисления площади данного прямоугольника необходимо ширину умножить на длину. Это все можно представить в виде формулы, которая будет выглядеть так: S = b * k.

А теперь рассмотрим этот способ на конкретном примере. Необходимо определить площадь садового участка с шириной 2 метра и длиной 7 метров.

S = 2 * 7 = 14 м2

В математике, особенно в приходится определять площадь иными способами, так как во многих случаях ни длина, ни ширина прямоугольника нам не известна. Вместе с тем имеют место другие известные величины. Как найти площадь прямоугольника в этом случае?

  • Если нам известна длина диагонали и один из углов, составляющий диагональ с любой стороной прямоугольника, то в этом случае потребуется вспомнить о площади Ведь если разобраться, то прямоугольник состоит из двух равных прямоугольных треугольников. Итак, вернемся к определяемой величине. Для начала необходимо определить косинус угла. Полученную величину умножить на длину диагонали. В итоге получим длину одной из сторон прямоугольника. Аналогично, но уже с помощью определения синуса, можно определить длину второй стороны. А как найти площадь прямоугольника теперь? Да очень просто, перемножить полученные величины.

В виде формулы это будет выглядеть так:

S = cos(a) * sin(a) * d2 , где d- длина диагонали

  • Еще один способ определения площади прямоугольника - через вписанную в него окружность. Он применяется в том случае, если прямоугольник является квадратом. Для использования данного способа необходимо знать Как вычислить площадь прямоугольника таким способом? Конечно же, по формуле. Доказывать мы ее не будем. А выглядит она так: S = 4 * r2, где r -радиус.

Случается так, что вместо радиуса нам известен диаметр вписанной окружности. Тогда формула будет выглядеть так:

S=d2,где d - диаметр.

  • Если известна одна из сторон и периметр, то как узнать площадь прямоугольника в этом случае? Для этого необходимо произвести ряд простых вычислений. Как мы знаем, противоположные стороны прямоугольника равны, поэтому от значения периметра необходимо отнять известную длину, умноженную на два. Полученный результат разделить на два и получим длину второй стороны. Ну, а дальше стандартный прием, перемножаем обе стороны и получаем площадь прямоугольника. В виде формулы это будет выглядеть так:

S=b* (P - 2*b), где b - длина стороны, P - периметр.

Как видим площадь прямоугольника можно определять различными способами. Все зависит от того, какие величины нам известны перед рассмотрением данного вопроса. Конечно же, последние методы исчисления в жизни практически не встречаются, но могут пригодиться для решений многих задач в школе. Возможно, и для решения ваших задач эта статья окажется полезной.

Периодически нам требуется знать площадь и объем комнаты. Эти данные могут понадобиться при проектировании отопления и вентиляции, при закупке стройматериалов и еще во многих других ситуациях. Также периодически требуется знать площадь стен. Все эти данные вычисляются легко, но предварительно придется поработать рулеткой — измерять все требуемые габариты. О том, как посчитать площадь комнаты и стен, объем помещения и пойдет речь дальше.

Площадь комнаты в квадратных метрах

  • Рулетка. Лучше — с фиксатором, но подойдет и обычная.
  • Бумага и карандаш или ручка.
  • Калькулятор (или считайте в столбик или в уме).

Набор инструментов нехитрый, найдется в каждом хозяйстве. Проще измерения проводить с помощником, но можно справиться и самостоятельно.

Для начала надо измерить длину стен. Делать это желательно вдоль стен, но если все они заставлены тяжелой мебелью, можно проводить измерения и посередине. Только в этом случае следите чтобы лента рулетки лежала вдоль стен, а не наискосок — погрешность измерений будет меньше.

Прямоугольная комната

Если помещение правильной формы, без выступающих частей, вычислить площадь комнаты просто. Измеряете длину и ширину, записываете на бумажке. Цифры пишите в метрах, после запятой ставите сантиметры. Например, длина 4,35 м (430 см), ширина 3,25 м (325 см).

Найденные цифры перемножаем, получаем площадь комнаты в квадратных метрах. Если обратимся к нашему примеру, то получится следующее: 4,35 м * 3,25 м = 14,1375 кв. м. В данной величине оставляют обычно две цифры после запятой, значит округляем. Итого, рассчитанная квадратура комнаты 14,14 квадратных метров.

Помещение неправильной формы

Если надо высчитать площадь комнаты неправильной формы, ее разбивают на простые фигуры — квадраты, прямоугольники, треугольники. Потом измеряют все нужные размеры, производят расчеты по известным формулам (есть в таблице чуть ниже).

Один из примеров — на фото. Так как и то, и другое — прямоугольник, площадь считается по той же формуле: длину умножаем на ширину. Найденную цифру надо отнять или прибавить к размеру помещения — в зависимости от конфигурации.

Площадь комнаты сложной формы

  1. Считаем квадратуру без выступа: 3,6 м * 8,5 м = 30,6 кв. м.
  2. Считаем габариты выступающей части: 3,25 м * 0,8 м = 2,6 кв. м.
  3. Складываем две величины: 30,6 кв. м. + 2,6 кв. м. = 33,2 кв. м.

Еще бывают помещения со скошенными стенами. В этом случае разбиваем ее так, чтобы получились прямоугольники и треугольник (как на рисунке ниже). Как видите, для данного случая требуется иметь пять размеров. Разбить можно было по-другому, поставив вертикальную, а не горизонтальную черту. Это не важно. Просто требуется набор простых фигур, а способ их выделения произвольный.

В этом случае порядок вычислений такой:

  1. Считаем большую прямоугольную часть: 6,4 м * 1,4 м = 8,96 кв. м. Если округлить, получим 9, 0 кв.м.
  2. Высчитываем малый прямоугольник: 2,7 м * 1,9 м = 5,13 кв. м. Округляем, получаем 5,1 кв. м.
  3. Считаем площадь треугольника. Так как он с прямым углом, то равен половине площади прямоугольника с такими же размерами. (1,3 м * 1,9 м) / 2 = 1,235 кв. м. После округления получаем 1,2 кв. м.
  4. Теперь все складываем чтобы найти общую площадь комнаты: 9,0 + 5,1 + 1,2 = 15,3 кв. м.

Планировка помещений может быть очень разнообразной, но общий принцип вы поняли: делим на простые фигуры, измеряем все требуемые размеры, высчитываем квадратуру каждого фрагмента, потом все складываем.

Еще одно важное замечание: площадь комнаты, пола и потолка — это все одинаковые величины. Отличия могут быть если есть какие-то полу-колоны, не доходящие до потолка. Тогда из общей квадратуры вычитается квадратура этих элементов. В результате получаем площадь пола.

Как рассчитать квадратуру стен

Определение площади стен часто требуется при закупке отделочных материалов — обоев, штукатурки и т.п. Для этого расчета нужны дополнительные измерения. К имеющимся уже ширине и длине комнаты нужны будут:

  • высота потолков;
  • высота и ширина дверных проемов;
  • высота и ширина оконных проемов.

Все измерения — в метрах, так как квадратуру стен тоже принято измерять в квадратных метрах.

Так как стены прямоугольные, то и площадь считается как для прямоугольника: длину умножаем на ширину. Таким же образом вычисляем размеры окон и дверных проемов, их габариты вычитаем. Для примера рассчитаем площадь стен, изображенных на схеме выше.

  1. Стена с дверью:
    • 2,5 м * 5,6 м = 14 кв. м. — общая площадь длинной стены
    • сколько занимает дверной проем: 2,1 м *0,9 м = 1,89 кв.м.
    • стена без учета дверного проема — 14 кв.м — 1,89 кв. м = 12,11 кв. м
  2. Стена с окном:
    1. квадратура маленьких стен: 2,5 м * 3,2 м = 8 кв.м.
    2. сколько занимает окно: 1,3 м * 1,42 м = 1,846 кв. м, округляем, получаем 1,75 кв.м.
    3. стена без оконного проема: 8 кв. м — 1,75 кв.м = 6,25 кв.м.

Найти общую площадь стен не составит труда. Складываем все четыре цифры: 14 кв.м + 12,11 кв.м. + 8 кв.м + 6,25 кв.м. = 40,36 кв. м.

Объем комнаты

Для некоторых расчетов требуется объем комнаты. В этом случае перемножаются три величины: ширина, длинна и высота помещения. Измеряется данная величина в кубических метрах (кубометрах), называется еще кубатурой. Для примера используем данные из предыдущего пункта:

  • длинна — 5,6 м;
  • ширина — 3,2 м;
  • высота — 2,5 м.

Если все перемножить, получаем: 5,6 м * 3,2 м * 2,5 м = 44,8 м 3 . Итак, объем помещения 44,8 куба.

Урок на тему: "Формулы определения площади треугольника, прямоугольника, квадрата"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 5 класса
Тренажер к учебнику И.И.Зубаревой и А.Г.Мордковича
Тренажер к учебнику Г.В.Дорофеева и Л.Г.Петерсона

Определение и понятие площади фигуры

Чтобы лучше понять, что такое площадь фигуры, рассмотрим рисунок.
Эта произвольная фигура разбита на 12 маленьких квадратика. Сторона каждого квадратика равна 1 см. А площадь каждого квадратика равна 1 квадратному сантиметру, что записывается так: 1 см 2 .

Тогда площадь фигуры равна 12 квадратным сантиметрам. В математике площадь обозначается латинской буквой S.
Значит, площадь нашей фигуры равна: S фигуры = 12 см 2 .

Площадь фигуры равна площади всех маленьких квадратиков, из которых она состоит!

Ребята, запомните!
Площадь измеряется квадратными единицами длины. Единицы измерения площади:
1. Квадратный километр - км 2 (когда площади очень большие, например, страна или море).
2. Квадратный метр - м 2 (вполне подходит для того, чтобы измерять площадь участка или квартиры).
3. Квадратный сантиметр - см 2 (обычно используется на уроках математики, когда рисуют фигуры в тетради).
4. Квадратный миллиметр - мм 2 .

Площадь треугольника

Рассмотрим два вида треугольников: прямоугольный и произвольный.

Чтобы найти площадь прямоугольного треугольника необходимо знать длину основания и высоту. В прямоугольном треугольнике высоту заменяет одна из сторон. Поэтому в формулу площади треугольника вместо высоты подставляем одну из сторон.
В нашем примере стороны равны 7 см и 4 см. Формула для расчета площади треугольника записывается так:
S прямоугольного треугольника АВС = ВС * СА: 2


S прямоугольного треугольника АВС = 7 см * 4 см: 2 = 14 см 2

Теперь рассмотрим произвольный треугольник.

Для такого треугольника необходимо провести высоту к основанию.
В нашем примере высота равна 6 см, а основание равно 8 см. Как и в предыдущем примере, рассчитываем площадь по формуле:
S произвольного треугольника АВС = ВС * h: 2.

Подставим в формулу наши данные и получим:
S произвольного треугольника АВС = 8 см * 6 см: 2 = 24 см 2 .

Площадь прямоугольника и квадрата

Возьмем прямоугольник АВСD со сторонами 5 см и 8 см.
Формула расчета площади прямоугольника записывается так:
S прямоугольника АВСD = АВ * ВС.


S прямоугольника АВСD = 8 см * 5 см = 40 см 2 .

Теперь рассчитаем площадь квадрата. В отличии от прямоугольника и треугольника, для нахождения площади квадрата необходимо знать только одну сторону. В нашем примере сторона квадрата ABCD равна 9 см. S квадрата АВСD = АВ * ВС = АВ 2 .

Подставим в формулу наши данные и получим:
S квадрата АВСD = 9 см * 9 см = 81 см 2 .

С таким понятием, как площадь, нам приходится сталкиваться в своей жизни повседневно. Так, например, при строительстве дома ее нужно знать для того, чтобы рассчитать количество необходимого материала. Размер садового участка также будет характеризоваться площадью. Даже ремонт в квартире невозможно сделать без этого определения. Поэтому вопрос, как найти площадь прямоугольника, на нашем жизненном пути встает очень часто и является важным не только для школьников.

Для тех, кто не знает, прямоугольник - это плоская фигура, у которой противоположные стороны равны, а углы составляют 90°. Для обозначения площади в математике используют английскую букву S. Ее измеряют в квадратных единицах: метрах, сантиметрах и так далее.

Теперь попытаемся дать подробный ответ на вопрос, как найти площадь прямоугольника. Существует несколько способов определения этой величины. Наиболее часто мы сталкиваемся со способом определения площади с помощью ширины и длины.

Возьмем прямоугольник с шириной b и длиной k. Для вычисления площади данного прямоугольника необходимо ширину умножить на длину. Это все можно представить в виде формулы, которая будет выглядеть так: S = b * k

А теперь рассмотрим этот способ на конкретном примере. Необходимо определить площадь садового участка с шириной 2 метра и длиной 7 метров.

S = 2 * 7 = 14 м2

В математике, особенно в старших классах, приходится определять площадь иными способами, так как во многих случаях ни длина, ни ширина прямоугольника нам не известна. Вместе с тем имеют место другие известные величины. Как найти площадь прямоугольника в этом случае?

Если нам известна длина диагонали и один из углов, составляющий диагональ с любой стороной прямоугольника, то в этом случае потребуется вспомнить о площади прямоугольного треугольника. Ведь если разобраться, то прямоугольник состоит из двух равных прямоугольных треугольников. Итак, вернемся к определяемой величине. Для начала необходимо определить косинус угла. Полученную величину умножить на длину диагонали. В итоге получим длину одной из сторон прямоугольника. Аналогично, но уже с помощью определения синуса, можно определить длину второй стороны. А как найти площадь прямоугольника теперь? Да очень просто, перемножить полученные величины.

В виде формулы это будет выглядеть так:

S = cos(a) * sin(a) * d2 , где d- длина диагонали

Еще один способ определения площади прямоугольника - через вписанную в него окружность. Он применяется в том случае, если прямоугольник является квадратом. Для использования данного способа необходимо знать радиус окружности. Как вычислить площадь прямоугольника таким способом? Конечно же, по формуле. Доказывать мы ее не будем. А выглядит она так: S = 4 * r2, где r -радиус.

Случается так, что вместо радиуса нам известен диаметр вписанной окружности. Тогда формула будет выглядеть так:

S=d2,где d - диаметр.

Если известна одна из сторон и периметр, то как узнать площадь прямоугольника в этом случае? Для этого необходимо произвести ряд простых вычислений. Как мы знаем, противоположные стороны прямоугольника равны, поэтому от значения периметра необходимо отнять известную длину, умноженную на два. Полученный результат разделить на два и получим длину второй стороны. Ну, а дальше стандартный прием, перемножаем обе стороны и получаем площадь прямоугольника. В виде формулы это будет выглядеть так:

S=b* (P - 2*b), где b - длина стороны, P - периметр.

Как видим площадь прямоугольника можно определять различными способами. Все зависит от того, какие величины нам известны перед рассмотрением данного вопроса. Конечно же, последние методы исчисления в жизни практически не встречаются, но могут пригодиться для решений многих задач в школе. Возможно, и для решения ваших задач эта статья окажется полезной.

Полезный калькулятор для школьников и взрослых позволяет быстро вычислить площадь прямоугольника по двум его сторонам. Подобный расчет мы часто производим не только в рамках школьного курса геометрии, но и в повседневной жизни. Например, если нужно посчитать площадь комнаты при ремонте квартиры, для расчета необходимого количества материалов.

Удобная навигация по статье:

Как рассчитать площадь прямоугольника

Прямоугольником принято называть геометрическую плоскую фигуру, которая имеет параллельно расположенные противоположные стороны при углах в 90 градусов. В качестве длины этой геометрической фигуры выступает величина, которая имеет большую сторону. При этом, за ширину принимается величина меньшей стороны. Для правильного вычисления площади прямоугольника Вам необходимо знать определённые параметры, которыми обладает данная фигура. В их числе:

  • диагональ;
  • ширина;
  • так называемый угол наклона к одной из сторон диагонали;
  • длина.

Таким образом, произвести расчёт площади прямоугольника можно различными способами. Всё зависит от количества информации о фигуре, а именно, какие величины нам точно известны.

Как вычислить площадь прямоугольника, имея линейные параметры его сторон?

Давайте в качестве обозначения длины прямоугольника будем использовать букву «а», для его ширины – букву «b», а площадь геометрической фигуры обозначим буквой «S». Согласно этому, наша формула будет выглядеть следующим образом: S = a x b.

Зная линейные параметры прямоугольника, можно легко определить его периметр последующей формуле: P = 2(a + b), где в качестве обозначения периметра мы используем букву «P».

Как можно вычислить площадь прямоугольника, зная величину одну из его сторон и диагональ?

Как нам известно, диагональ делит любой прямоугольник на два так называемых прямоугольных треугольника. Давайте присвоим диагонали индекс «с», а длину стороны обозначим буквой «а». Теперь необходимо произвести следующий порядок действий:

  1. для начала необходимо найти длину неизвестной стороны. Для этого мы используем формулу Пифагора: b = V c2 – a2.
  2. После этого, нам следует определить площадь нашей основной геометрической фигуры (прямоугольника) как площадь треугольника, умноженную на два: Sтр = ½ (а х в).
  3. Согласно вышеописанной схеме расчёта площадь прямоугольника в данном случае будет равна: S = 2 x Sтр = а х в.

В том случае, если нам известны периметр прямоугольника, а также длина одной из его сторон, то площадь этой геометрической фигуры можно вычислить, определив длину второй стороны (b = (P – 2xa), по такой формуле: S = a x b.

Если же нам известны размер диагонали прямоугольника, а также угол между стороной и самой диагональю, то площадь можно вычислить при помощи следующих тригонометрических функций: Sтр = ½ х с2 х sinФ х cosФ.

При этом, общая площадь в данном случае будет составлять S = 2 x Sтр.

Площадь прямоугольника. Видео-урок.

Площадь прямоугольника

здравствуйте сегодня мы посмотрим как связь между действиями умножения и деления поможет нам решать задачи связанные с темой площадь прямоугольника мы уже говорили о том что если мы представляем число в виде произведения двух множителей то мы говорим о длине и ширине и площади стороны площадь стороны подчеркиваем площади площадь обводим прямоугольник мы составляем четверку равенств два равенства на умножение два равенства на деления если длину умножить на ширину получится площадь поменяем местами множители ширину умножить на длину получим площадь если площадь делим наш ширину получается длина если площадь разделим на длину получим ширину таким образом у нас была формула с равно а умножить на b или если поменяем местами множители то b умножить на a из этой формулы мы можем получить еще 2 для нахождения длины если известна площадь и ширина а равно с разделить на b и для нахождения ширины если известна площадь и длина b равно с разделить на а эти знания мы можем использовать при решении задачи если нам дана площадь дана длина и нужно найти периметр прямоугольника эта задача номер шесть на страница 101 площадь прямоугольника 14 квадратных сантиметров а длина 7 сантиметров вопрос звучит так найди ширину и периметр прямоугольника но в будущем останется только такая формулировка найди периметр прямоугольника поэтому дано записан следующим образом с равно 14 ти метров а равно 7 сантиметров и сразу в условии можем написать выражение для нахождения шириной b равно 14 разделить на 7 сантиметров требуется найти периметр записываю формулу которую мы пользуемся при нахождении периметра периметр это сумма длин всех сторон p равно a + b + a + b для того чтобы найти периметр мы должны знать длину прямоугольника должны знать ширину прямоугольника длина нам известно по условию ширину мы можем найти потому что нам ещё известно площадь у нас есть формула b равно с разделить на а и и не обязательно писать в да но мы уже записали выражение пользуясь именно этой формулой решение первым действием я нахожу ширину 14 разделить на 7 равно 2 сантиметрам пояснения равна ширина прямоугольника теперь я могу найти периметр прямоугольника семь плюс два плюс семь плюс два используя сочетательное свойство сложения объединяют слагаемые и нахожу результат периметр равен 18 см ответ периметр прямоугольника равен 18 см

Как найти площадь прямоугольника пример. Как посчитать площадь

С таким понятием, как площадь, нам приходится сталкиваться в своей жизни повседневно. Так, например, при строительстве дома ее нужно знать для того, чтобы рассчитать количество необходимого материала. Размер садового участка также будет характеризоваться площадью. Даже ремонт в квартире невозможно сделать без этого определения. Поэтому вопрос, как найти площадь прямоугольника, на нашем встает очень часто и является важным не только для школьников.

Для тех, кто не знает, прямоугольник - это плоская фигура, у которой противоположные стороны равны, а углы составляют 90о. Для обозначения площади в математике используют английскую букву S. Ее измеряют в квадратных единицах: метрах, сантиметрах и так далее.

Теперь попытаемся дать подробный ответ на вопрос, как найти площадь прямоугольника. Существует несколько способов определения этой величины. Наиболее часто мы сталкиваемся со способом определения площади с помощью ширины и длины.

Возьмем прямоугольник с шириной b и длиной k. Для вычисления площади данного прямоугольника необходимо ширину умножить на длину. Это все можно представить в виде формулы, которая будет выглядеть так: S = b * k.

А теперь рассмотрим этот способ на конкретном примере. Необходимо определить площадь садового участка с шириной 2 метра и длиной 7 метров.

S = 2 * 7 = 14 м2

В математике, особенно в приходится определять площадь иными способами, так как во многих случаях ни длина, ни ширина прямоугольника нам не известна. Вместе с тем имеют место другие известные величины. Как найти площадь прямоугольника в этом случае?

  • Если нам известна длина диагонали и один из углов, составляющий диагональ с любой стороной прямоугольника, то в этом случае потребуется вспомнить о площади Ведь если разобраться, то прямоугольник состоит из двух равных прямоугольных треугольников. Итак, вернемся к определяемой величине. Для начала необходимо определить косинус угла. Полученную величину умножить на длину диагонали. В итоге получим длину одной из сторон прямоугольника. Аналогично, но уже с помощью определения синуса, можно определить длину второй стороны. А как найти площадь прямоугольника теперь? Да очень просто, перемножить полученные величины.

В виде формулы это будет выглядеть так:

S = cos(a) * sin(a) * d2 , где d- длина диагонали

  • Еще один способ определения площади прямоугольника - через вписанную в него окружность. Он применяется в том случае, если прямоугольник является квадратом. Для использования данного способа необходимо знать Как вычислить площадь прямоугольника таким способом? Конечно же, по формуле. Доказывать мы ее не будем. А выглядит она так: S = 4 * r2, где r -радиус.

Случается так, что вместо радиуса нам известен диаметр вписанной окружности. Тогда формула будет выглядеть так:

S=d2,где d - диаметр.

  • Если известна одна из сторон и периметр, то как узнать площадь прямоугольника в этом случае? Для этого необходимо произвести ряд простых вычислений. Как мы знаем, противоположные стороны прямоугольника равны, поэтому от значения периметра необходимо отнять известную длину, умноженную на два. Полученный результат разделить на два и получим длину второй стороны. Ну, а дальше стандартный прием, перемножаем обе стороны и получаем площадь прямоугольника. В виде формулы это будет выглядеть так:

S=b* (P - 2*b), где b - длина стороны, P - периметр.

Как видим площадь прямоугольника можно определять различными способами. Все зависит от того, какие величины нам известны перед рассмотрением данного вопроса. Конечно же, последние методы исчисления в жизни практически не встречаются, но могут пригодиться для решений многих задач в школе. Возможно, и для решения ваших задач эта статья окажется полезной.

Что такое площадь и что такое прямоугольник

Площадь – это такая геометрическая величина, с помощью которой можно определить размер какой-либо поверхности геометрической фигуры.

На протяжении многих веков так повелось, что вычисление площади называли квадратурой. То есть, чтобы узнать площадь несложных геометрических фигур, достаточно было подсчитать количество единичных квадратов, которыми условно были покрыты фигуры. А фигуру, которая имела площадь, называли квадрируемой.

Поэтому, можно подвести итог, что площадь – это такая величина, которая показывает нам размер части плоскости, соединенной между собой отрезками.

Прямоугольник – это такой четырехугольник, у которого все углы прямые. То есть, четырехстороннюю фигуру, которая имеет четыре прямых угла и ее противоположные стороны равны, называют прямоугольником.

Как найти площадь прямоугольника

Самый простой способ нахождения площади прямоугольника – взять прозрачную бумагу, например кальку, или клеенку и расчертить ее на равные квадратики по 1 см, а потом приложить к изображению прямоугольника. Количество заполненных квадратиков и будет площадью в сантиметрах квадратных. Например, на рисунке видно, что прямоугольник попадает в 12 квадратов, значит, его площадь равна – 12 кв. см.


Но для нахождения площади больших объектов, например квартиры, необходим более универсальный способ, поэтому была доказана формула, чтобы найди площадь прямоугольника необходимо умножить его длину на ширину.

А теперь давайте попробуем записать правило нахождения площади прямоугольника в виде формулы. Обозначим площадь нашей фигуры буквой S, буква а – будет обозначать его длину, а буква b – ширину.

В итоге получаем вот такую формулу:

S = а * b.

Если наложить эту формулу на рисунок прямоугольника выше, то мы получим те же 12 кв.см, т.к. а = 4 см, b = 3 см, а S = 4 * 3 = 12 кв.см.

Если взять две идентичные фигуры, и наложить их одну на другую, то они совпадут, а будут называться равными. У таких равных фигур будут также равны их площади и периметры.

Зачем уметь находить площадь

Во-первых, если вы знаете, как найти площадь какой-либо фигуры, то с помощью ее формулы вы без проблем сможете решать любые задачи по геометрии и тригонометрии.
Во-вторых, научившись находить площадь прямоугольника, вы сначала сможете решать простые задачки, а со временем перейдете к решению более сложных, и научитесь находить площади фигур, которые вписаны в прямоугольник или около него.
В-третьих, зная такую простую формулу, как S = а * b, вы получаете возможность без проблем решать любые простые бытовые задачи (например, находить S квартиры или дома), а со временем и сможете применить их к решению сложных архитектурных проектов.

То есть, если совсем упростить формулу нахождения площади, то она будет выглядеть так:

П = Д х Ш,

Что обозначает П – это искомая площадь, Д – это ее длина, Ш – обозначает ее ширину, а х – является знаком умножения.

А известно ли вам, что площадь любого многоугольника можно условно разбить на определенное количество квадратных блоков, которые находятся внутри этого многоугольника? Какая разница между площадью и периметром

Давайте на примере попробуем понять разницу между периметром и площадью. Например, наша школа находится на участке, который огражден забором – суммарная длина этого забора будет периметром, а то пространство, которое находится внутри ограждения и является площадью.

Единицы измерения площади

Если периметр одномерный измеряется в линейных единицах, которыми являются дюймы, футы и метры, то S относится к двумерным исчислениям и имеет свою длину и ширину.

И измеряется S в квадратных единицах, таких, как:

Один квадратный миллиметр, где S квадрата имеет сторону, равную одному миллиметру;
Квадратный сантиметр, имеет S такого квадрата, у которого сторона равна одному сантиметру;
Квадратный дециметр равен S этого квадрата со стороной в один дециметр;
Квадратный метр имеет S квадрата, сторона которого равна одному метру;
И наконец, квадратный километр имеет S квадрата, сторона которого равна одному километру.

Для измерения площадей больших участков на поверхности Земли используют такие единицы, как:

Один ар или сотка – если S квадрата имеет сторону десять метров;
Один гектар равен S квадрата, у которого сторона имеет сто метров.

Задачи и упражнения

А теперь давайте рассмотрим несколько примеров.

На рисунке 62 нарисована фигура, которая имеет восемь квадратов и каждая сторона этих квадратов равна одному сантиметру. Поэтому S такого квадрата будет квадратный сантиметр.

Если записать, то это будет выглядеть так:

1 см2. А S все этой фигуры, состоящей из восьми квадратов, будет равняться 8 кв.см.

Если взять какую-нибудь фигуру и разбить ее на «р» квадратов со стороной, равной одному сантиметру, то ее площадь будет равна:

Р см2.

Давайте рассмотрим прямоугольник, изображений на рисунке 63. Этот прямоугольник состоит из трех полос, а каждая такая полоска разбита на пять равных квадратов, имеющих сторону в 1 см.

Попробуем найти его площадь. И так берем пять квадратов, и умножаем на три полоски и получаем площадь равную 15 кв.см.:

Рассмотрим следующий пример. На рисунке 64 изображен прямоугольник ABCD, ломаной линией KLMN он разбит на две части. Первая его часть равна площади 12 см2, а вторая имеет площадь 9 см2. Теперь давайте найдем площадь всего прямоугольника:

Итак, берем три и умножаем на семь и получаем 21 кв.см:

3 7 = 21 кв.см. При этом 21 = 12 + 9.

И приходим к выводу, что площадь всей нашей фигуры равна сумме площадей ее отдельных частей.

Рассмотрим еще один пример. И так на рисунке 65 изображен прямоугольник, который с помощью отрезка АС разбит на два равных треугольника ABC и ADC

А так, как нам уже известно, что квадрат – это такой же прямоугольник, только имеющий равные стороны, то площадь каждого треугольника будет равняться половине площади всего прямоугольника.

Представим, что сторона квадрата равна а, то:

S = a a = a2.

Делаем вывод, что формула площади квадрата будет иметь такой вид:

А запись a2 называется квадратом числа а.

И так, если сторона нашего квадрата равна четырем сантиметрам, то его площадь будет:

4 4, то есть 4 * 2 = 16 кв.см.

Вопросы и задания

Найдите площадь фигуры, которая разбита на шестнадцать квадратов, сторона которых равна одному сантиметру.
Вспомните формулу прямоугольника и запишите ее.
Какие измерения нужно произвести, чтобы узнать площадь прямоугольника?
Дайте определение равным фигурам.
Могут ли иметь равные фигуры различные площади? А периметры?
Если вам известны площади отдельных частей фигуры, как узнать ее общую площадь?
Сформулируйте и запишите, чему равняется площадь квадрата.

Историческая справка

А известно ли вам, что древние люди в Вавилоне умели рассчитать площадь прямоугольника. Так же древние египтяне делали расчеты различных фигур, но так как точных формул они не знали, то вычисления имели небольшие погрешности.

В своей книге «Начала» знаменитый древнегреческий математик Евклид, описывает различные способы вычисления площадей разных геометрических фигур.

Инструкция

Чтобы найти длину стороны прямоугольника, если известна ширина и площадь , разделите числовое значение площади на числовое значение ширины. То есть воспользуйтесь формулой:Д = П / Ш, где:Д – длина стороны прямоугольника,
Ш – ширина прямоугольника,
П – его площадь .Например, если площадь прямоугольника равна 20 см², а его ширина – 5 см, то длина его стороны будет: 20 / 5 = 4 см.

Перед началом вычислений переведите ширину и площадь прямоугольника в одну систему измерений. То есть, площадь должна выражаться в соответствующих ширине квадратных единицах измерения. При этом, длина получится в тех же единицах, что и ширина . Так, если ширина задана в метрах, то площадь необходимо в . Особенно актуален такой при измерении земельных участков, где площадь обычно задана в гектарах, арах и «сотках».

Например, пусть площадь дачного участка равняется шести соткам, а его ширина – 30 метров. Требуется найти длину участка.
Так как «соткой» 100 , то площадь «стандартных» шести можно записать как 600 м². Отсюда длину земельного участка можно найти разделив 600 на 30. Получается – 20 метров.

Иногда заданы площадь и ширина фигуры, имеющей не прямоугольную, а произвольную форму. При этом, также требуется найти ее длину . Как правило, в это случае подразумеваются габаритные фигуры, то есть параметры прямоугольника, в который эту фигуру можно заключить.
Если большая точность вычислений не требуется, то воспользуйтесь вышеприведенной формулой (Д = П / Ш). Однако, значение длины при этом получится заниженным. Чтобы получить более точное значение длины фигуры, оцените насколько полно фигура заполняет свой габаритный прямоугольник и разделите полученную длину на коэффициент заполнения.

Источники:

  • Какова длина прямоугольника, если известна его ширина

Каждая геометрическая фигура обладает определенными характеристиками, которые, в свою очередь, связаны между собой. Поэтому для того, чтобы найти площадь прямоугольника, нужно знать, какова длина его сторон.

Прямоугольник - одна из самых распространенных геометрических фигур. Он представляет собой четырехугольник, все углы которого равны между собой и составляют по 90 градусов. Эта характеристика, в свою очередь, влечет за собой определенные последствия в отношении других параметров рассматриваемой фигуры.

Во-первых, его стороны, располагающиеся друг напротив друга, будут параллельны. Во-вторых, эти стороны будут попарно равны между собой по длине. Эти характеристики оказываются очень важными для исчисления других его параметров, таких как площадь.

Порядок вычисления площади прямоугольника

Для того чтобы вычислить , необходимо иметь информацию о том, какова длина его сторон. Следует помнить, что стороны прямоугольника не равны по этому показателю: прямоугольник, все стороны которого равны между собой по длине, представляет собой другую геометрическую фигуру, которая носит название квадрата.

Поэтому для обозначения различающихся сторон прямоугольника приняты особые обозначения: так, сторону с большой протяженностью обычно называют длиной фигуры, а сторону с меньшей протяженностью - его шириной. При этом каждый прямоугольник в силу его свойств, описанных выше, имеет две длины и две ширины.

Собственно алгоритм вычисления площади этой фигуры достаточно прост: необходимо лишь его одну длину умножить на одну его ширину. Полученное произведение будет представлять собой площадь прямоугольника.

Пример вычисления

Предположим, есть прямоугольник, одна сторона которого составляет 5 сантиметров, а другая - 8 сантиметров. Таким образом, согласно данному выше определению, длина этой фигуры, измеряемая как протяженностью большей стороны, будет равна 8 сантиметрам, а ширина - 5 сантиметрам.

Для нахождения площади фигуры необходимо ее ширину умножить на длину: таким образом, площадь рассматриваемого прямоугольника составит 40 квадратных сантиметров. Обратите внимание, что для осуществления вычислений оба используемых параметра должны измеряться в одинаковых единицах, например

С таким понятием, как площадь, нам приходится сталкиваться в своей жизни повседневно. Так, например, при строительстве дома ее нужно знать для того, чтобы рассчитать количество необходимого материала. Размер садового участка также будет характеризоваться площадью. Даже ремонт в квартире невозможно сделать без этого определения. Поэтому вопрос, как найти площадь прямоугольника, на нашем жизненном пути встает очень часто и является важным не только для школьников.

Для тех, кто не знает, прямоугольник - это плоская фигура, у которой противоположные стороны равны, а углы составляют 90°. Для обозначения площади в математике используют английскую букву S. Ее измеряют в квадратных единицах: метрах, сантиметрах и так далее.

Теперь попытаемся дать подробный ответ на вопрос, как найти площадь прямоугольника. Существует несколько способов определения этой величины. Наиболее часто мы сталкиваемся со способом определения площади с помощью ширины и длины.

Возьмем прямоугольник с шириной b и длиной k. Для вычисления площади данного прямоугольника необходимо ширину умножить на длину. Это все можно представить в виде формулы, которая будет выглядеть так: S = b * k

А теперь рассмотрим этот способ на конкретном примере. Необходимо определить площадь садового участка с шириной 2 метра и длиной 7 метров.

S = 2 * 7 = 14 м2

В математике, особенно в старших классах, приходится определять площадь иными способами, так как во многих случаях ни длина, ни ширина прямоугольника нам не известна. Вместе с тем имеют место другие известные величины. Как найти площадь прямоугольника в этом случае?

Если нам известна длина диагонали и один из углов, составляющий диагональ с любой стороной прямоугольника, то в этом случае потребуется вспомнить о площади прямоугольного треугольника. Ведь если разобраться, то прямоугольник состоит из двух равных прямоугольных треугольников. Итак, вернемся к определяемой величине. Для начала необходимо определить косинус угла. Полученную величину умножить на длину диагонали. В итоге получим длину одной из сторон прямоугольника. Аналогично, но уже с помощью определения синуса, можно определить длину второй стороны. А как найти площадь прямоугольника теперь? Да очень просто, перемножить полученные величины.

В виде формулы это будет выглядеть так:

S = cos(a) * sin(a) * d2 , где d- длина диагонали

Еще один способ определения площади прямоугольника - через вписанную в него окружность. Он применяется в том случае, если прямоугольник является квадратом. Для использования данного способа необходимо знать радиус окружности. Как вычислить площадь прямоугольника таким способом? Конечно же, по формуле. Доказывать мы ее не будем. А выглядит она так: S = 4 * r2, где r -радиус.

Случается так, что вместо радиуса нам известен диаметр вписанной окружности. Тогда формула будет выглядеть так:

S=d2,где d - диаметр.

Если известна одна из сторон и периметр, то как узнать площадь прямоугольника в этом случае? Для этого необходимо произвести ряд простых вычислений. Как мы знаем, противоположные стороны прямоугольника равны, поэтому от значения периметра необходимо отнять известную длину, умноженную на два. Полученный результат разделить на два и получим длину второй стороны. Ну, а дальше стандартный прием, перемножаем обе стороны и получаем площадь прямоугольника. В виде формулы это будет выглядеть так:

S=b* (P - 2*b), где b - длина стороны, P - периметр.

Как видим площадь прямоугольника можно определять различными способами. Все зависит от того, какие величины нам известны перед рассмотрением данного вопроса. Конечно же, последние методы исчисления в жизни практически не встречаются, но могут пригодиться для решений многих задач в школе. Возможно, и для решения ваших задач эта статья окажется полезной.

Прямоугольник – это частный случай четырехугольника. Это значит, что у прямоугольника четыре стороны. Его противоположные стороны равны: так например, если одна из его сторон равна 10 см, то противоположная ей будет так же равны 10 см. Частным случаем прямоугольника является квадрат. Квадрат – это прямоугольник, у которого все стороны равны. Для вычисления площади квадрата можно пользоваться тем же алгоритмом, что и для вычисления площади прямоугольника.

Как узнать площадь прямоугольника по двум сторонам

Для того чтобы найти площадь прямоугольника, надо умножить его длину на ширину: Площадь = Длина × Ширина. В случае, указанном ниже: Площадь = AB × BC.

Как узнать площадь прямоугольника по стороне и длине диагонали

В некоторых задачах необходимо найти площадь прямоугольника, используя длину диагонали и одну из сторон. Диагональ прямоугольника делит его на два равных прямоугольных треугольника. Следовательно, можно определить вторую сторону прямоугольника, воспользовавшись теоремой Пифагора. После этого задача сводится к предыдущему пункту.


Как узнать площадь прямоугольника по периметру и стороне

Периметр прямоугольника – это сумма всех его сторон. Если известен периметр прямоугольника и одна сторона (например ширина), можно вычислить площадь прямоугольника, воспользовавшись следующей формулой:
Площадь = (Периметр×ширина – ширина^2)/2.


Площадь прямоугольника через синус острого угла между диагоналями и длину диагонали

Диагонали в прямоугольнике равны, поэтому, чтобы вычислить площадь на основании длины диагонали и синуса острого угла между ними, следует воспользоваться следующей формулой: Площадь = Диагональ^2 × sin(острого угла между диагоналями)/2.


Прямоугольную форму площадь прямоугольника. Как узнать площадь прямоугольника

Урок и презентация на тему: "Периметр и площадь прямоугольника"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 3 класса
Тренажер для 3 класса "Правила и упражнения по математике"
Электронное учебное пособие для 3 класса "Математика за 10 минут"

Что такое прямоугольник и квадрат

Прямоугольник – это четырёхугольник, у которого все углы прямые. Значит, противоположные стороны равны друг другу.

Квадрат – это прямоугольник, у которого равны и стороны, и углы. Его называют правильным четырёхугольником.


Четырёхугольники, в том числе прямоугольники и квадраты, обозначаются 4 буквами – вершинами. Для обозначения вершин используют латинские буквы: A, B, C, D ...

Пример.

Читается так: четырёхугольник ABCD; квадрат EFGH.

Что такое периметр прямоугольника? Формула расчета периметра

Периметр прямоугольника – это сумма длин всех сторон прямоугольника или сумма длины и ширины, умноженная на 2.

Периметр обозначается латинской буквой P . Так как периметр - это длина всех сторон прямоугольника, то он периметр записывается в единицах длины: мм, см, м, дм, км.

Например, периметр прямоугольника АВСD обозначается как P ABCD , где А, В, С, D - это вершины прямоугольника.

Запишем формулу периметра четырехугольника ABCD:

P ABCD = AB + BC + CD + AD = 2 * AB + 2 * BC = 2 * (AB + BC)


Пример.
Задан прямоугольник ABCD со сторонами: AB=СD=5 см и AD=BC=3 см.
Определим P ABCD .

Решение:
1. Нарисуем прямоугольник ABCD с исходными данными.
2. Напишем формулу для расчета периметра данного прямоугольника:

P ABCD = 2 * (AB + BС)

P ABCD = 2 * (5 см + 3 см) = 2 * 8 см = 16 см


Ответ: P ABCD = 16 см.

Формула расчета периметра квадрата

У нас есть формула для определения периметра прямоугольника.

P ABCD = 2 * (AB + BC)


Применим её для определения периметра квадрата. Учитывая, что все стороны квадрата равны, получаем:

P ABCD = 4 * AB


Пример.
Задан квадрат ABCD со стороной, равной 6 см. Определим периметр квадрата.

Решение.
1. Нарисуем квадрат ABCD с исходными данными.

2. Вспомним формулу расчета периметра квадрата:

P ABCD = 4 * AB


3. Подставим в формулу наши данные:

P ABCD = 4 * 6 см = 24 см

Ответ: P ABCD = 24 см.

Задачи на нахождение периметра прямоугольника

1. Измерь ширину и длину прямоугольников. Определи их периметр.

2. Нарисуй прямоугольник ABCD со сторонами 4 см и 6 см. Определи периметр прямоугольника.

3. Нарисуй квадрат СEOM со стороной 5 см. Определи периметр квадрата.

Где используется расчет периметра прямоугольника?

1. Задан участок земли, его нужно обнести забором. Какой длины будет забор?


В данной задаче необходимо точно рассчитать периметр участка, чтобы не купить лишний материал для постройки забора.

2. Родители решили сделать ремонт в детской комнате. Необходимо знать периметр комнаты и её площадь, чтобы правильно рассчитать количество обоев.
Определи длину и ширину комнаты, в которой ты живешь. Определи периметр своей комнаты.

Что такое площадь прямоугольника?

Площадь – это числовая характеристика фигуры. Площадь измеряется квадратными единицами длины: см 2 , м 2 , дм 2 и др. (сантиметр в квадрате, метр в квадрате, дециметр в квадрате и т.д.)
В вычислениях обозначается латинской буквой S .

Для определения площади прямоугольника необходимо длину прямоугольника умножить на его ширину.
Площадь прямоугольника вычисляется умножением длины АК на ширину КМ. Запишем это в виде формулы.

S AKMO = AK * KM


Пример.
Чему равна площадь прямоугольника AKMO, если его стороны равны 7 см и 2 см?

S AKMO = AK * KM = 7 см * 2 см = 14 см 2 .

Ответ: 14 см 2 .

Формула вычисления площади квадрата

Площадь квадрата можно определить, умножив сторону саму на себя.

Пример.
В данном примере площадь квадрата вычисляется умножением стороны АB на ширину BC, но так как они равны, получается умножение стороны AB на AB.

S AВСО = AB * BC = AB * AB


Пример.
Определи площадь квадрата AKMO со стороной 8 см.

S AKMО = AK * KM = 8 см * 8 см = 64 см 2

Ответ: 64 см 2 .

Задачи на нахождение площади прямоугольника и квадрата

1.Задан прямоугольник со сторонами 20 мм и 60 мм. Вычисли его площадь. Запиши ответ в квадратных сантиметрах.

2. Был куплен дачный участок размером 20 м на 30 м. Определи площадь дачного участка, ответ запиши в квадратных сантиметрах.

Площадь прямоугольника, как не будет дерзко звучать, но это важное понятие. В повседневной жизни мы постоянно сталкиваемся с ним. Узнать размер полей, огородов, рассчитать количество краски, необходимой для побелки потолка, сколько понадобится обоев для оклейки ко

мнаты и другое.

Геометрическая фигура

Для начала поговорим о прямоугольнике. Это фигура на плоскости, которая имеет четыре прямых угла, а ее противоположные стороны равны. Стороны его привыкли называть длиной и шириной. Измеряют их в миллиметрах, сантиметрах, дециметрах, метрах и т. д. Теперь ответим на вопрос: «Как найти площадь прямоугольника?» Для этого необходимо длину умножить на ширину.

Площадь=длина*ширина

Но еще одна оговорка: длина и ширина должны быть выражены в одинаковых единицах измерения, то есть метр и метр, а не метр и сантиметр. Записывается площадь латинской буквой S. Для удобства обозначим длину латинской буквой b, а ширину латинской буквой a, как показано на рисунке. Отсюда мы делаем вывод, что единицей измерения площади является мм 2 , см 2 , м 2 и т. д.

Рассмотрим на конкретном примере, как найти площадь прямоугольника. Длина b=10 ед. Ширина a=6 ед. Решение: S=a*b, S=10 ед.*6 ед., S=60 ед 2 . Задача. Как узнать площадь прямоугольника, если длина в 2 раза больше ширины и составляет 18 м? Решение: если b=18 м, тогда а=b/2, a=9 м. Как найти площадь прямоугольника, если известны обе стороны? Правильно, подставить в формулу. S=a*b, S=18*9, S=162 м 2 . Ответ: 162 м 2 . Задача. Сколько необходимо купить рулонов обоев для комнаты, если ее размеры составляют: длина 5,5 м ширина 3,5, а высота 3 м? Размеры рулона обоев: длина 10 м, ширина 50 см. Решение: сделаем рисунок комнаты.

Площади противоположных сторон равны. Вычислим площадь стены с размерами 5,5 м и 3 м. S стены 1 =5,5*3,

S стены 1 =16,5 м 2 . Следовательно, противоположная стена имеет площадь равную 16,5 м 2 . Найдем площади следующих двух стен. Стороны их, соответственно, равны 3,5 м и 3 м. S стены 2 =3,5*3, S стены 2 =10,5 м 2 . Значит, и противоположная сторона равна 10,5 м 2 . Сложим все результаты. 16,5+16,5+10,5+10,5=54 м 2 . Как вычислить площадь прямоугольника, если стороны выражены в разных единицах измерения. Ранее мы вычисляли площади в м 2 , то и в этом случае будем использовать метры. Тогда ширина рулона обоев будет равна 0,5 м. S рулона =10*0,5, S рулона =5 м 2 . Теперь узнаем, сколько рулонов необходимо для оклейки комнаты. 54:5=10,8 (рулонов). Так как они измеряются целыми числами, то нужно купить 11 рулонов обоев. Ответ: 11 рулонов обоев. Задача. Как вычислить площадь прямоугольника, если известно, что ширина на 3 см короче длины, а сумма сторон прямоугольника составляет 14 см? Решение: пусть длина х см, тогда ширина (х-3) см. х+(х-3)+х+(х-3)=14, 4х-6=14, 4х=20, х=5 см - длина прямоугольника, 5-3=2 см - ширина прямоугольника, S=5*2, S=10 см 2 Ответ: 10 см 2 .

Резюме

Рассмотрев примеры, надеюсь, стало понятно, как найти площадь прямоугольника. Напомню, что единицы измерения длины и ширины должны совпадать, иначе получится неправильный результат, чтобы не допустить ошибок, читайте задание внимательно. Иногда сторона может быть выражена через другую сторону, не стоит бояться. Обратитесь к нашим решенным задачам, вполне возможно, они могут помочь. Но хоть раз в жизни мы сталкиваемся с нахождением площади прямоугольника.

Прямоугольник – это частный случай четырехугольника. Это значит, что у прямоугольника четыре стороны. Его противоположные стороны равны: так например, если одна из его сторон равна 10 см, то противоположная ей будет так же равны 10 см. Частным случаем прямоугольника является квадрат. Квадрат – это прямоугольник, у которого все стороны равны. Для вычисления площади квадрата можно пользоваться тем же алгоритмом, что и для вычисления площади прямоугольника.

Как узнать площадь прямоугольника по двум сторонам

Для того чтобы найти площадь прямоугольника, надо умножить его длину на ширину: Площадь = Длина × Ширина. В случае, указанном ниже: Площадь = AB × BC.

Как узнать площадь прямоугольника по стороне и длине диагонали

В некоторых задачах необходимо найти площадь прямоугольника, используя длину диагонали и одну из сторон. Диагональ прямоугольника делит его на два равных прямоугольных треугольника. Следовательно, можно определить вторую сторону прямоугольника, воспользовавшись теоремой Пифагора. После этого задача сводится к предыдущему пункту.


Как узнать площадь прямоугольника по периметру и стороне

Периметр прямоугольника – это сумма всех его сторон. Если известен периметр прямоугольника и одна сторона (например ширина), можно вычислить площадь прямоугольника, воспользовавшись следующей формулой:
Площадь = (Периметр×ширина – ширина^2)/2.


Площадь прямоугольника через синус острого угла между диагоналями и длину диагонали

Диагонали в прямоугольнике равны, поэтому, чтобы вычислить площадь на основании длины диагонали и синуса острого угла между ними, следует воспользоваться следующей формулой: Площадь = Диагональ^2 × sin(острого угла между диагоналями)/2.


Начиная с 5 класса, ученики начинают знакомиться с понятием площадей разных фигур. Особая роль отводится площади прямоугольника, так как эта фигура одна из наиболее простых в изучении.

Понятия площади

Любая фигура имеет свою площадь, а вычисление площади отталкиваются от единичного квадрата, то есть от квадрата с длинной стороны в 1 мм, либо 1 см, 1 дм и так далее. Площадь такой фигуры равна $1*1 = 1мм^2$, либо $1см^2$ и т. д. Площадь, как правило, обозначается буквой – S.

Площадь показывает размер части плоскости, которую занимает фигура, очерченная отрезками.

Прямоугольником называется четырехугольник, у которого все углы одинаковой градусной меры и равны по 90 градусов, а противоположные стороны попарно параллельны и ровны.

Особое внимание нужно обращать на единицы измерения длины и ширины. Они должны совпадать. Если единицы не совпадают, их переводят. Как правило переводят большую единицу в меньшую, например, если длина дается в дм, а ширина в см, то дм переводят в см, а результат получится в $см^2$.

Формула площади прямоугольника

Для того, чтобы найти площадь прямоугольника без формулы необходимо посчитать количество единичных квадратов, на которые разбита фигура.

Рис. 1. Прямоугольник, разбитый на единичные квадраты

Прямоугольник разбит на 15 квадратов, то есть его площадь равна 15 см2. Стоит обратить внимание, что в ширину фигура занимает 3 квадрата, а в длину 5, потому чтобы вычислить количество единичных квадратов, необходимо умножить длину на ширину. Меньшая сторона четырехугольника – ширина, большая длина. Таким образом, можно вывести формулу площади прямоугольника:

S = a · b, где a,b – ширина и длина фигуры.

К примеру, если длина прямоугольника 5 см, а ширина 4 см, то площадь будет равна 4*5=20 см 2 .

Расчет площади прямоугольника, с использованием его диагонали

Для того, что бы расчета площади прямоугольника через диагональ необходимо применить формулу:

$$S = {1\over{2}} ⋅ d^2 ⋅ sin{α}$$

Если в задании дано значения угла между диагоналями, а также значение самой диагонали, то можно вычислить площадь прямоугольника по общей формуле произвольных выпуклых четырехугольников.

Диагональ – это отрезок, который соединяет противоположные точки фигуры. Диагонали прямоугольника равны, и точкой пересечения делятся пополам.

Рис. 2. Прямоугольник с начерченными диагоналями

Примеры

Для закрепления темы рассмотрим примеры заданий:

№1. Найти площадь огородного участка, такой формы как на рисунку.

Рис. 3. Рисунок к задаче

Решение:

Для того чтобы вычесть площадь, необходимо фигуру разбить на два прямоугольника. Один из них будет иметь размеры 10 м и 3 м, другой 5 м. и 7 м. Отдельно находим их площади:

$S_1 =3*10=30 м^2$;

Это и будет площадь огородного участка $S = 65 м^2$.

№2. Вычесть площадь прямоугольник, если дано его диагональ d=6 см. и угол между диагоналями α =30 0 .

Решение:

Значение $sin 30 ={1\over{2}} $,

$ S ={1\over{2}}⋅ d^2 ⋅ sinα$

$S ={1\over{2}} * 6^2 * {1\over{2}} =9 см^2$

Таким образом, $S=9 см^2$.

Диагонали разделяет прямоугольник на 4 фигуры – 4 треугольника. При этом треугольники попарно равны. Если провести диагональ в прямоугольнике, то она разделяет фигуру на два равных прямоугольных треугольника. Средняя оценка: 4.4 . Всего получено оценок: 214.

Площадь геометрической фигуры - численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
  2. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  3. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
  4. где S - площадь треугольника,
    - длины сторон треугольника,
    - высота треугольника,
    - угол между сторонами и,
    - радиус вписанной окружности,
    R - радиус описанной окружности,

Формулы площади квадрата

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.
  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.
  3. где S - Площадь квадрата,
    - длина стороны квадрата,
    - длина диагонали квадрата.

Формула площади прямоугольника

    Площадь прямоугольника равна произведению длин двух его смежных сторон

    где S - Площадь прямоугольника,
    - длины сторон прямоугольника.

Формулы площади параллелограмма

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма
  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    a · b · sin α

  3. где S - Площадь параллелограмма,
    - длины сторон параллелограмма,
    - длина высоты параллелограмма,
    - угол между сторонами параллелограмма.

Формулы площади ромба

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.
  4. где S - Площадь ромба,
    - длина стороны ромба,
    - длина высоты ромба,
    - угол между сторонами ромба,
    1 , 2 - длины диагоналей.

Формулы площади трапеции

  1. Формула Герона для трапеции

    Где S - Площадь трапеции,
    - длины основ трапеции,
    - длины боковых сторон трапеции,

Чем отличается периметр от площади? Что такое периметр

Урок и презентация на тему: "Периметр и площадь прямоугольника"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 3 класса
Тренажер для 3 класса "Правила и упражнения по математике"
Электронное учебное пособие для 3 класса "Математика за 10 минут"

Что такое прямоугольник и квадрат

Прямоугольник – это четырёхугольник, у которого все углы прямые. Значит, противоположные стороны равны друг другу.

Квадрат – это прямоугольник, у которого равны и стороны, и углы. Его называют правильным четырёхугольником.


Четырёхугольники, в том числе прямоугольники и квадраты, обозначаются 4 буквами – вершинами. Для обозначения вершин используют латинские буквы: A, B, C, D ...

Пример.

Читается так: четырёхугольник ABCD; квадрат EFGH.

Что такое периметр прямоугольника? Формула расчета периметра

Периметр прямоугольника – это сумма длин всех сторон прямоугольника или сумма длины и ширины, умноженная на 2.

Периметр обозначается латинской буквой P . Так как периметр - это длина всех сторон прямоугольника, то он периметр записывается в единицах длины: мм, см, м, дм, км.

Например, периметр прямоугольника АВСD обозначается как P ABCD , где А, В, С, D - это вершины прямоугольника.

Запишем формулу периметра четырехугольника ABCD:

P ABCD = AB + BC + CD + AD = 2 * AB + 2 * BC = 2 * (AB + BC)


Пример.
Задан прямоугольник ABCD со сторонами: AB=СD=5 см и AD=BC=3 см.
Определим P ABCD .

Решение:
1. Нарисуем прямоугольник ABCD с исходными данными.
2. Напишем формулу для расчета периметра данного прямоугольника:

P ABCD = 2 * (AB + BС)

P ABCD = 2 * (5 см + 3 см) = 2 * 8 см = 16 см


Ответ: P ABCD = 16 см.

Формула расчета периметра квадрата

У нас есть формула для определения периметра прямоугольника.

P ABCD = 2 * (AB + BC)


Применим её для определения периметра квадрата. Учитывая, что все стороны квадрата равны, получаем:

P ABCD = 4 * AB


Пример.
Задан квадрат ABCD со стороной, равной 6 см. Определим периметр квадрата.

Решение.
1. Нарисуем квадрат ABCD с исходными данными.

2. Вспомним формулу расчета периметра квадрата:

P ABCD = 4 * AB


3. Подставим в формулу наши данные:

P ABCD = 4 * 6 см = 24 см

Ответ: P ABCD = 24 см.

Задачи на нахождение периметра прямоугольника

1. Измерь ширину и длину прямоугольников. Определи их периметр.

2. Нарисуй прямоугольник ABCD со сторонами 4 см и 6 см. Определи периметр прямоугольника.

3. Нарисуй квадрат СEOM со стороной 5 см. Определи периметр квадрата.

Где используется расчет периметра прямоугольника?

1. Задан участок земли, его нужно обнести забором. Какой длины будет забор?


В данной задаче необходимо точно рассчитать периметр участка, чтобы не купить лишний материал для постройки забора.

2. Родители решили сделать ремонт в детской комнате. Необходимо знать периметр комнаты и её площадь, чтобы правильно рассчитать количество обоев.
Определи длину и ширину комнаты, в которой ты живешь. Определи периметр своей комнаты.

Что такое площадь прямоугольника?

Площадь – это числовая характеристика фигуры. Площадь измеряется квадратными единицами длины: см 2 , м 2 , дм 2 и др. (сантиметр в квадрате, метр в квадрате, дециметр в квадрате и т.д.)
В вычислениях обозначается латинской буквой S .

Для определения площади прямоугольника необходимо длину прямоугольника умножить на его ширину.
Площадь прямоугольника вычисляется умножением длины АК на ширину КМ. Запишем это в виде формулы.

S AKMO = AK * KM


Пример.
Чему равна площадь прямоугольника AKMO, если его стороны равны 7 см и 2 см?

S AKMO = AK * KM = 7 см * 2 см = 14 см 2 .

Ответ: 14 см 2 .

Формула вычисления площади квадрата

Площадь квадрата можно определить, умножив сторону саму на себя.

Пример.
В данном примере площадь квадрата вычисляется умножением стороны АB на ширину BC, но так как они равны, получается умножение стороны AB на AB.

S AВСО = AB * BC = AB * AB


Пример.
Определи площадь квадрата AKMO со стороной 8 см.

S AKMО = AK * KM = 8 см * 8 см = 64 см 2

Ответ: 64 см 2 .

Задачи на нахождение площади прямоугольника и квадрата

1.Задан прямоугольник со сторонами 20 мм и 60 мм. Вычисли его площадь. Запиши ответ в квадратных сантиметрах.

2. Был куплен дачный участок размером 20 м на 30 м. Определи площадь дачного участка, ответ запиши в квадратных сантиметрах.

Пери́метр (др. -греч. περίμετρον - окружность, др. -греч. περιμετρέο - измеряю вокруг) - общая длина границы фигуры (чаще всего на плоскости). Имеет ту же размерность величин, что и длина. Иногда периметром называют границу геометрической фигуры.

Пло́щадь - численная характеристика двумерной (плоской или искривлённой) геометрической фигуры , неформально говоря, показывающая размер этой фигуры. Исторически вычисление площади называлось квадратурой. Фигура, имеющая площадь, называется квадрируемой. Конкретное значение площади для простых фигур однозначно вытекает из предъявляемых к этому понятию практически важных требований (см. ниже). Фигуры с одинаковой площадью называются равновеликими.

Периметр фигуры обладает только одним параметром - протяжённостью, или длиной, выраженной в единицах длины: метр, ярд, аршин, локоть. Или производных от них: километр, сантиметр, дециметр.

Площадь фигуры обладает двумя параметрами - например, длиной и шириной, или радиусом и коэффициентом Пи, в зависимости от формы. Величина площади выражается в единицах в квадрате: квадратных метрах, гектарах, квадратных милях

Периметр и его определение

Периметром принято называть протяжённость границы плоской фигуры, состоящей из прямых отрезков, где начало каждого последующего примыкает к окончанию предыдущего.

Строго говоря, окружность тоже обладает периметром, но для криволинейных границ принято говорить о длине окружности, или длине дуги

Для определения длины периметра, необходимо измерить, или вычислить, длину каждой стороны фигуры, а затем суммировать полученные числа.

Площадь фигуры и её определение

Площадь простейших геометрических фигур определяется по формулам.

Площадь прямоугольника равна произведению длин сторон.
Площадь круга равна произведению квадрата радиуса на число Пи=3,1415
Свои формулы есть для треугольника, сектора, трапеции, параллелограмма.

Площадь сложных криволинейных фигур вычисляется интегралом. Взятие интеграла формулы, описывающей границу фигуры, даст в результате площадь. В этом и есть геометрический смысл интеграла - он вычисляет площадь, ограниченную графиком функции на заданном участке.

Сложная фигура, lkz которой нет общей формулы, для определения площади мысленно разбивается на простейшие фигуры. Площади простых фигур вычисляются и затем суммируются.

Периметр и площадь геометрической фигуры связаны и один параметр всегда может быть вычислен из другого с минимальными дополнительными данными.

Сегодня у нас речь пойдет о том, как вычислить периметр многоугольника . Но сначала поговорим о многообразии фигур. Посмотрите на рисунок. Какие фигуры мы здесь видим? Это прямоугольник и квадрат – многоугольники, которые имеют по четыре стороны, а также треугольник, имеющий три стороны, и пятиугольник с пятью сторонами.

И как же найти периметр этих фигур?

Для того, чтобы найти периметр многоугольника надо сложить длины всех его сторон .

Периметр обозначается заглавной латинской буквой Р .

Давайте рассмотрим несколько примеров.

Вычислим периметр многоугольника О. Как мы говорили ранее, периметр многоугольника – это сумма длин всех его сторон. Сложим все стороны нашего многоугольника:

Р = 15 + 17 + 10 + 10 + 20 + 15 = 87

Но можно вычислить периметр и другим способом, используя умножение. Мы видим, что некоторые стороны многоугольника одинаковы. У нас две стороны по 15 условных единиц и еще две по 10. Запишем выражение:

Р = 15 × 2 + 10 × 2 + 17 + 20 = 87

Теперь поговорим об особенностях вычисления периметра некоторых многоугольников.

Прямоугольник – это такой четырехугольник, у которого противоположные стороны равны. Например, чтобы вычислить А со сторонами а и б , надо сложить эти стороны и умножить полученный результат на 2 :

Р(прямоугольника) = (а + б) × 2

То есть, если сторона прямоугольника а = 5 см , а сторона прямоугольника б = 3 см , то периметр прямоугольника будет:

Р = (5 + 3) × 2 = 16 см

А как найти неизвестные стороны прямоугольника, если известен его периметр и только одна из сторон?

Р(прямоугольника) = 2 × а + 2 × б

а = (Р – 2 × б) ÷ 2 или б = (Р – 2 × а) ÷ 2

Пример: Периметр прямоугольника 16 см, сторона а = 5 см. Чему равны остальные стороны прямоугольника?

Если мы знаем одну сторону прямоугольника, значит длины двух, из четырех сторон нам известны. Найдем остальные две стороны. То есть найдем одну, а вторая будет ей равна.

сторона б = (16 – 2 × 5) ÷ 2 = 3 см

Ответ: у прямоугольника две стороны по 5 см и две по 3 см.

Квадрат – это прямоугольник, у которого все стороны равны. Чтобы вычислить надо длину одной стороны умножить на 4:

Р(квадрата) = а × 4

Например, у квадрата В сторона а = 5 см. Чтобы найти его периметр:

Р(В) = 5 × 4 = 20 см

А если известен периметр квадрата, как найти длины его сторон? Очень просто, надо его периметр разделить на четыре:

а = Р ÷ 4

Пример: Периметр квадрата 24 см. Чему равны его стороны?

а = 24 ÷ 4 = 6

Ответ: Стороны квадрата равны 6 см.

По подобию вычисления периметра квадрата вычисляется периметр всех равносторонних многоугольников . То есть равен длине одной его стороны умноженной на количество сторон.

Если длина одной стороны многоугольника равна а , а число его сторон равно n , то его периметр будет равен:

Р(равностороннего многоугольника) = а × n

Например, у пятиугольника Д сторона а = 6 см . Найдем его периметр:

Р(Д) = 6 × 5 = 30 см

Ну а если известен периметр равностороннего многоугольника, то вычислить длины его сторон очень просто, надо разделить его периметр на количество сторон.

Периметр - один из математических, а точнее - геометрических терминов, применяется в основном для вычисления сторон фигуры.

Из нашей статьи вы узнаете, что такое периметр и как он измеряется на примере основных геометрических фигур.

Определение периметра

Периметром называют общую длину всех сторон или окружности той или иной фигуры. Обозначается периметр большой буквой «Р», а измерять его можно в различных единицах длины, таких как миллиметры (мм), сантиметры (см), метры (м) и т. д. Для различных фигур существуют различные формулы для нахождения периметра. Ниже мы приведем несколько примеров, как узнать периметр у прямоугольника и некоторых других фигур.

Измеряем периметр

Если вам необходимо узнать периметр у сложной фигуры (к таким фигурам можно отнести фигуры с неровными линиями), то для этого вам понадобится веревка или нитка. При помощи этих вещей необходимо описать точный контур фигуры, а чтобы не запутаться, вы можете на веревке сделать отметки карандашом. Или же можно просто ее обрезать, а после приложить все части к линейке. Таким образом, вы узнаете, чему равен периметр практически у любой сложной фигуры.

Существует еще одно приспособление для вычисления периметра у сложных фигур: его называют курвиметр (роликовый дальномер). С его помощью вам нужно установить ролик в любую точку фигуры и описать роликом контур фигуры. Полученное число и будет равно периметру. О нахождении периметра у других геометрических фигур вы сможете узнать из нашей статьи . Ну а мы расскажем ещё о нескольких способах изменения периметра для разных фигур.

Круг, квадрат, равносторонний треугольник

Давайте также рассмотрим, как узнать периметр круга. Это довольно-таки просто: достаточно лишь определить длину окружности, а сделать это можно, умножив радиус «r» на число π≈3,14 и затем на 2 (P=L=2∙π∙r).

Существует несколько понятий периметра.

Геометрическое: всякая замкнутая плоскость имеет длину своих границ. И из области безопасности. То есть, периметром называют собственно охраняемую границу или территорию охраняемого объекта. Поскольку тема эта из рубрики «Обучение», а не из рубрики «Законы и безопасность», следует остановиться на геометрическом понятии периметра.

Итак, что такое периметр?

Этот вопрос почему-то ставит в тупик некоторых молодых людей. Они что, не учили этого в школе? Если какие-то математические (геометрические) формулы, которыми пичкают школяров, никогда не пригодятся в жизни, то знать, что такое периметр – просто необходимо, и это знание, можете не сомневаться, будет востребованным.

Каков периметр вашего дачного дома? А участка? От периметра зависит площадь и того, и другого. А если ваш огород, поле, сад имеет овальную форму или множество углов? Как вы узнаете их периметр?

Для начала следует заглянуть в словари и энциклопедии. И уяснить для себя, что включает в себя понятие «периметр».

Большой энциклопедический словарь дает такое определение периметру: это длина контура, который замкнут. Сумма длин сторон геометрической фигуры, к примеру, всех пяти сторон пятиугольника.

Скажем, имеется земельный участок, представляющий пятиугольник. Одна сторона простирается на 20 метров, другая – на 16, третья – на 4, четвертая – на 11 и пятая – на 6 метров. Каков периметр земельного участка? Простым арифметическим действием сложения мы вычисляем периметр земельного участка: 20 + 16 + 4 + 11 + 6 = 57 метров.

Словарь Ушакова дает такое объяснение понятию «периметр»: это сумма длин всех сторон плоской фигуры. Что мы уже и проиллюстрировали на вышеприведенном примере.

А как же окружность? Она ведь тоже плоская. Каков ее периметр, и как его вычислить?

Существует формула вычисления периметра (длины) окружности. Но для этого сначала надлежит вспомнить, что такое окружность, и какие она имеет элементы. А окружность – есть кривая, которая не только плоская и замкнутая, но еще и все ее точки расположены на одинаковом удалении от заданной точки, зовущейся центром.

Отрезок прямой, соединяющий этот центр с какой-либо точкой окружности, есть радиус (R).

Отрезок прямой, проходящий через центр окружности и соединяющий ее две точки, наиболее удаленные друг от друга, есть диаметр (D). Диаметр равен двум радиусам.

Отношение длины окружности к ее диаметру одинаково для любой окружности и равно постоянному числу 3, 14... Число это обозначается буквой π (пи).

Вот теперь можно и дать формулу вычисления периметра (длины) окружности: P = 2πR или π D.

Скажем, нам известен радиус окружности: 5 метров. Чему будет равен ее периметр?

Действия здесь будут следующие: диаметр (10 метров) умножаем на 3, 14. И получаем периметр окружности, равный 31, 4 метра.

Встречаются и более сложные фигуры, периметр которых необходимо узнать. Здесь для расчета периметра применяются методы математического анализа, что требует уже специальных знаний...

Как рассчитать квадратные метры пола? - Венингер

После того, как вы нашли идеальный образец ламината, пришло время подумать о том, сколько досок вам действительно нужно купить. Для этого нам нужны знания, , как посчитать квадратные метры этажа и как полученный результат перевести в количество купленных упаковок панелей. Чтобы развеять сомнения тех, кто впервые в жизни столкнулся с покупкой панелей, делимся полезными советами.

Как рассчитать квадратные метры пола

Расчет квадратных метров этажа не будет существенно отличаться от того, что мы имели возможность узнать на уроках математики уже в начальной школе. Самая простая ситуация, когда пол - наша комната - квадратная или прямоугольная. Затем его длина умножается на ширину и получается интересующий нас результат. Например, если длина комнаты 5 м, а ширина 4 м, то общая площадь составит 20 м².Это правда, что просто 😊.

Это, как рассчитать квадратные метры этажа, немного сложно, если помещение не квадратное или прямоугольное, а имеет много разной длины и ширины в зависимости от участка. Затем следует разделить их так, чтобы получилось несколько квадратов или прямоугольников. Таким образом, каждый фрагмент этажа в комнате получит свое количество квадратных метров, что только после их сложения даст ответ, сколько квадратных метров имеет пол комнаты.

Как рассчитать количество досок на пол

Теперь, когда площадь комнаты составляет 20 квадратных метров, мы можем решить, сколько панелей нам нужно. Мы будем использовать напольные панели из коллекции Expert . В упаковке 7 штук, количество квадратных метров которых составляет 1,548 м2. Таким образом, точные подсчеты говорят, что нам потребуется 12,19 упаковок, что при округлении дает 13. Мы покупаем половые панели из дерева в полных упаковках.

Однако такой расчет не даст ответа на вопрос, сколько панелей нам действительно понадобится. Специалисты напоминают, что при укладке панелей необходимо подрезать. Это означает, что в некоторых местах вместо использования оставшегося небольшого фрагмента (например, 40 см) мы предпочтем начать с полной доски. Мы не избежим ситуации, особенно в помещениях разной длины и ширины, что часть оставшихся панелей не подойдет для их обустройства/использования.

Поэтому рекомендуется приобретать больше квадратных метров панелей, чем мы получаем. С 20 квадратных метров мы должны взять примерно на 10% больше, например, 22 метра. Из рассчитанных ранее 13 упаковок получаем их 15 (причина, всегда полные упаковки). Также следует помнить, что производитель рекомендует оставлять мин. 1 цельная доска ламината в оригинальном размере - подробности можно найти в гарантийном талоне на изделие.

.

Как рассчитать квадратные метры? Практические расчеты

Квадратный метр является основной единицей измерения, используемой в строительстве. По нему определяется площадь, например, комнаты или коридора, или всей квартиры или дома. Один квадратный метр соответствует квадрату со стороной 1 м. Так что, когда площадь нашей гостиной в блоке содержит 20 таких квадратов, мы можем с уверенностью сказать, что наша комната равна 20 м2.

В основном мы используем эту меру при покупке квартиры или дома, когда продавец точно знает, сколько квадратных метров содержит помещение, и оценивает его стоимость исходя из количества квадратных метров с учетом цены за 1 м2 помещения.Квадратный метр мы также часто используем при покупке отделочных материалов для своего дома или квартиры. Зная, сколько м2 пола в нашей ванной комнате, мы покупаем столько квадратных метров, например, плитки для ванной.

Чем квадратный метр отличается от обычного погонного метра?

Еще одна достаточно известная мера в сфере строительства и внутренней отделки – так называемая погонный метр. Погонный метр — это единица измерения длины многомерных объектов, имеющих длину, ширину и глубину.Таким образом, это отрезок длиной 1 метр, независимо от его ширины или глубины.

Таким образом, погонный метр определяет длину данного элемента, например, длину стены. С другой стороны, квадратный метр определяет площадь элемента, например стены. Зная значение погонного метра вертикальной и горизонтальной длины стены, мы можем вычислить ее площадь.

Расчет квадратных метров - когда это полезно?

Вычисление м2 – навык, который пригодится в повседневной жизни, когда, например, вы делаете ремонт комнаты в своем доме.Если вы знаете площадь данной комнаты, то, например, вы знаете, сколько квадратных метров вам понадобится плитки или сколько краски потребуется для покраски стен, например, в гостиной.

Все товары для внутренней отделки, кроме количества собственного количества (например, количество литров) краски в банке), также содержат информацию о том, на сколько квадратных метров продукта, упакованного в упаковку производителя, вам хватит.

Это относится к краскам, плитке, упакованной в пакеты и отмеченным квадратными метрами, гипсокартону, штукатурке или другим строительным материалам.

Например, вы хотите сделать терракотовую плитку в ванной комнате. По плану санузел, например, 4,5 м2. В этом случае общее количество плитки понадобится для покрытия плиткой всего пола. В то же время, покупая терракоту для ванной или другого помещения, нужно брать определенную скидку (около 20%), т.е. не покупать ее совместно. Может случиться так, что во время укладки плитки одна из них повредится и треснет. Плитка, например, упакована, например, на 1,2 м2. Затем, посчитав площадь пола, вы знаете, сколько упаковок купить, чтобы хватило на весь пол в ванной.

Формула расчета квадратных метров площади

В данном случае бантики по математике начальной школы. Во время учебы у вас были узоры для поверхностей различной формы, например, треугольник, квадрат, прямоугольник или круг. В строительстве мы чаще всего имеем дело с прямоугольными фигурами, квадратами, иногда встречаются треугольники или круги.

Таким образом, основная формула для прямоугольных поверхностей равна высоте x длине поверхности. В этом случае вы должны измерить, например.погонный метр длины и высоты стены и умножьте их на себя. Затем вы придумаете количество квадратных метров стены.

Таким образом, мы можем написать, что площадь рассчитывается по следующей формуле:

A x B = площадь, выраженная в м2, где:

А - это высота

B - это длина

Итак, подсчет квадратных метров с помощью простых форм не является сложной математической операцией.

Для более сложных форм, напр.треугольников, эллипсов или окружностей следует использовать формулы для расчета этих площадей. В случае прямоугольного треугольника площадь можно рассчитать по приведенной выше формуле, зная две стороны треугольника и разделив результат на 2.

Иногда стена не образует идеального прямоугольника. Например, если у нас есть уклоны или стена неровная, то есть смысл измерить длину стены сверху и снизу. В этом случае мы рассматриваем более длинное измерение. Например:

Внизу стена 4,5м, а вверху получается ровно 5м.Тогда для расчета площади берем 5 м. Лучше купить больше материала, чем если бы оказалось, что он у нас закончился.

Как рассчитать квадратные метры комнаты?

Если вы хотите рассчитать квадратные метры данной комнаты, вам сначала нужно определить ее форму. В основном наши комнаты квадратные или прямоугольные. В этом случае измерьте длину и ширину комнаты. Например, комната длиной 5 м и шириной 4 м имеет площадь 20 м2 (4×5).

Ситуация немного хуже, когда наша комната имеет неправильную форму. У нас такая ситуация, например, в гостиной с эркером. В этом случае разделите площадь пола на меньшие квадраты или прямоугольники, рассчитайте их площадь и суммируйте результаты вместе.

Как рассчитать полезную площадь помещения со скатами?

В данном случае дело обстоит сложнее, потому что сами фаски рассчитать сложно. Расчет площади помещения с уклонами регламентирован строительными нормами PN-ISO 9836:1997 и PN-70/B-02365.Хотя последний является более старым стандартом, он все еще работает. Так что же он делает по стандартам:

ПН-70/Б-02365

По этому стандарту помещения высотой до 1,4 м не входят в полезную площадь. Напротив, помещения от 1,4 до 2,2 м - включается 50% полезной площади, при высоте 2,2 м - включается 100% площади.

ПН-ИСО 9836: 1997

Площадь помещения считается полностью с учетом площади пола.Если пространство под скосами меньше 1,9 м, это пространство считается вспомогательным (не входит в общую площадь помещения). С другой стороны, когда скосы более 1,9 м, учитываются целые площади.

Таким образом, расчетная схема помещения со скосами рассчитывается в зависимости от высоты скосов.

Итак, часть помещения без уклона считаем отдельно. С другой стороны, мы имеем дело со скосами таким образом, что измеряем высоту, на которой расположен скос от пола.Если она выше 1,4 м, но не превышает 2,2 м, то вычисляем площадь с уклонами, как если бы это был прямоугольник, т.е. перемножаем длину и ширину. По старому стандарту умножаем результат на 2,

По новому стандарту при высоте уклона ниже 1,9 м данная площадь с уклоном в помещении не включается в общую полезную площадь помещения.

Калькулятор площади стены

Это довольно простая в использовании интернет-платформа, которая рассчитает для вас площади стен.Вы вводите размеры стены, окон и дверей, а программа рассчитывает для вас общую площадь. Кстати, вы можете рассчитать, сколько краски вам понадобится для покраски комнаты. Такие калькуляторы для расчета площади стен можно найти в Интернете, и их использование очень интуитивно понятно.

Как рассчитать квадратные метры стен под штукатурку?

Все строительные материалы, в том числе штукатурные растворы, имеют стандартную упаковку. Это означает, что мы можем купить их, например.в килограммах или квадратных метрах. Когда речь идет о штукатурных растворах, на упаковке обычно написано количество, например, в килограммах, но производитель также пишет информацию о том, на сколько квадратных метров помещения хватит этого раствора.

Поэтому очень важно измерить поверхность оштукатуриваемых стен. В этом случае вычисляем площадь стен, включая скосы. Если стена полная, берем всю ее площадь. Когда данная стена в комнате имеет двери и окна, нам нужно измерить площадь окон и дверей и вычесть полученное значение из общей площади стен в данной комнате.

Некоторые строители не учитывают площадь окон и дверей при рассмотрении результата, который получился для сплошных стен. В результате излишки раствора используются для сложной обработки оконных и дверных проемов. Кроме того, всегда лучше купить больше, чем меньше.

Как рассчитать квадратные метры стен под покраску?

Расчет квадратных метров стен и потолков позволит определить общую площадь, подлежащую окраске. Благодаря этому мы будем знать, сколько литров краски нам нужно купить и во сколько это нам обойдется.Более того, когда мы нанимаем маляра, профессионал обычно называет нам цену работы за 1 м2 покрашенной стены или потолка.

Итак, начнем считать квадратные метры с определения высоты и длины стен. В целом высота комнат в блоке около 2,5 метров. В частных домах наш потолок может быть на другой высоте, например, выше.

Затем, когда мы знаем размеры стен, нас ждет простая математическая задача, заключающаяся в перемножении полученных значений высоты и длины отдельных стен.Складываем все поверхности стен между собой. Кстати, зная длину стен в помещении, мы уже имеем данные для расчета площади потолка или пола.

Общая окрашиваемая площадь является полной, т.е. без демонтажа окон и дверей. В общем случае площади окон и дверей можно опустить, вычтя около 10% расчетного значения из общего размера стен.

Как только у нас будет общая площадь стен для покраски, мы сможем купить нужное количество краски.Как узнать, сколько литров краски нужно купить? Итак, 1 литра качественной краски достаточно, чтобы покрасить примерно 14 м2 стены или потолка.

Как рассчитать квадратные метры крыши?

Крыша может быть более сложной для расчета. Методика очень похожа. Тем не менее, когда мы имеем дело с четырехскатной крышей, дело обстоит сложнее. В этом случае каждый изгиб или скос необходимо измерять индивидуально и тщательно. В этом случае стоит воспользоваться калькулятором площади, который учитывает: уклон ската, эркер, а также длину и ширину отдельных элементов.Расчет квадратных метров кровли лучше доверить профессионалам и проектировщикам зданий.

.

Как рассчитать квадратные метры? - Moleo.pl

Каждое строительство или ремонт дома требует расчета квадратных метров различных площадей. Уже думая, с чего начать строительство дома, возникают первые потребности , посчитав площадь в квадратных метрах . Площадь нашего участка, площадь застройки или даже расчет размера нужного нам дома – вещи, которые следует учитывать, начиная любое строительство. Без использования квадратных метров невозможно построить дом или даже отремонтировать его.Правильные расчеты помогут нам закупить материалы или даже рассчитаться со строительными или ремонтными бригадами. Вычисление квадратных метров — относительно простое занятие, основанное на элементарной математике. При строительстве и ремонте дома оказывается, что математика нужна нам каждый день и она крайне полезна при планировании всех этапов ремонта и строительства. Как рассчитать квадратные метры участка, пола, стены или крыши? В этом посте мы постараемся помочь всем, кто намерен произвести такой расчет в своей индивидуальной ситуации.Это умение окажется чрезвычайно полезным и важным в строительстве, в очень широком диапазоне его применения. Сколько бы времени ни заняло строительство дома, он понадобится нам на каждом этапе. Он также будет полезен во время использования построенного и готового здания.

Вычисление квадратных метров

Квадратных метров — единица измерения площади в системе СИ. Один квадратный метр соответствует площади квадрата, сторона которого равна 1 метру.Символ квадратного метра – м2. Часто в текстах используется также обозначение м2 или аббревиатура квадратные метры Квадратные метры используются для расчета размера конкретной площади. Это может быть вышеупомянутая площадь участка, стен, полов, крыши или подъезда. Зная размер площади в квадратных метрах, мы можем приблизительно оценить затраты, которые нам придется понести на ее приспособление. Мы будем знать, сколько материала нам нужно и какова будет стоимость ремонта/строительства данной части нашей собственности, которую будет собирать бригада по ремонту и строительству. Вычисление квадратных метров проще всего с правильными прямоугольными или квадратными формами поверхности. Базовая математика говорит нам, что мы делаем это, умножая на себя длины двух сторон поверхности. Например, при расчете площади пола прямоугольной комнаты со сторонами 4 м и 6 м она будет иметь площадь:

4 м * 6 м = 24 м2

Не всегда, конечно, измеренная площадь будет иметь стороны в полных метрах.Однако это не должно быть проблемой при расчете квадратных метров. Если мы немного изменим нашу примерную комнату и размеры будут 4 м и 35 см и 6 м и 47 см, мы можем представить длины сторон как 4,35 м и 6,47 м, а площадь должна быть рассчитана так же, как и раньше, т. е.

4,35 м * 6,47 м = 28,14 м2

Как рассчитать площадь крыши?

Наиболее проблематичным является расчет площади крыши .Эти расчеты зависят в основном от формы нашей крыши. Их может быть много. Начиная с самой простой плоской односкатной крыши, а затем перескакивая на сложные многоскатные крыши различной формы. В случае с крышей мы имеем дело не только с прямоугольниками, но и с различными видами трапеций, треугольников и параллелограммов. Так что не существует одного универсального метода расчета площади каждой крыши. Эти расчеты должны производиться по-разному в каждом отдельном случае.В основном на расчет площади кровли будут влиять длины отдельных сторон заданных секций кровли, угол наклона плоскостей кровли и количество элементов кровли в зависимости от сложности всего кровельного материала. В случае с крышами лучше всего воспользоваться помощью профессионалов. Каждый строительный проект должен содержать информацию о квадратных метрах крыши нашего дома. Если по каким-то причинам у нас нет такой информации, стоит измерить квадратные метры кровли у человека, оснащенного специализированными измерительными инструментами.Трудно представить, что мы будем сами бегать по крыше с рулеткой, измеряя отдельные ее края. Это было бы ни удобно, ни точно, и уж точно не безопасно.

Смотрите другие наши интересные статьи

Как обустроить магазин оптики?

Любой может открыть салон оптики. Вам не нужно никаких разрешений или специального образования в этой области. Все, что вам нужно, это наличные деньги ...

Как рассчитать квадратные метры стены?

При планировании покраски, а то и укладки плитки на стены на кухне или в ванной навык для расчета квадратных метров стены будет нужен и полезен.Эти расчеты производим так же, как и квадратные метры любой плоской поверхности. При расчете поверхности стен нам нужно только учесть все дверные и оконные проемы на этой стене, расположенные в них. Теперь приведем пример для расчета площади стены . В нашем примере у нас есть стена длиной 5,75 м и высотой 2,60 м. На этой стене у нас есть дверь шириной 80 см и высотой 2 м и окно 1,45 м х 1,15 м. Для расчета общей площади стены нам нужно вычислить площадь общей плоскости стены, а также размер двери и окна.Затем мы вычитаем размер проемов из полученной площади поверхности стены, чтобы получить общую площадь стены. Производим следующие расчеты:

Расчет площади плоскости стены:

5,75 м х 2,6 м = 14,95 м2

Расчет площади дверных и оконных проемов:

Дверь: 2 м х 0,8 м = 1,6 м2

Окно: 1,45 м x 1,15 м = 1,67 м2

Итого: 1,6 м + 1,67 м = 3,27 м2

Вычисление общей площади стены:

14,95 - 3, 207 = 9,072 19,008 м2 Стена имеет общую площадь 11,68 м2.Это значение будет полезно, например, при покупке краски для покраски такой стены.

Как рассчитать квадратные метры пола?

Подсчет квадратных метров пола , пожалуй, самая простая операция. Как правило, комнаты представляют собой правильные прямоугольники, в которых вычисление размеров является основной математической операцией, т.е. умножением длин обеих сторон комнаты. Однако есть комнаты неправильной формы, в которых нам придется повозиться немного больше.Итак, мы создадим виртуальную комнату с формами и размерами, как показано на рисунке:

Для расчета общей площади пола на разделим комнату на простые фигуры, посчитаем площади каждой части отдельно и просуммируем их все до. Так как наша комната имеет остров посередине, то в конце наших расчетов от полученного результата отнимаем его площадь и в итоговом числе получаются квадратные метры пола. Итак, делаем следующее деление:

Теперь посчитаем квадратные метры каждой части комнаты отдельно.Итак, выполняем следующие работы:

  1. 6 м * 5,5 м = 33 м2
  2. 1,5 м * 2,5 м = 3,75 м2
  3. 3,5 м * 3 м = 10,5 м2

2 1900,0 900,0 +3,75 м +33 м = 47,25 м2

Из полученного результата вычитаем площадь острова, которая равна 1,5 м * 2 м = 3 м2. Получаем:

47,25 м2 - 3 м2 = 44,25 м2

Это окончательный результат наших вычислений. Итак, при покупке плитки или панелей для нашей виртуальной комнаты нам потребуется как минимум 44,25 м2 .

Аналогичным образом считаем квадратные метры любой другой площади внутри дома, а также на участке. Этот навык пригодится, например, когда мы будем думать, как спроектировать сад.

квадратный метр погонных метров?

При планировании ремонта или отделки дома можно встретить термин «погонный метр». Что такое погонный метр, , чем он отличается от квадратного метра и как его можно перевести? Погонный метр в отличие от квадратных метров является единицей измерения.Это единица измерения длины многомерных объектов, т. е. объектов, имеющих длину, ширину, а часто и глубину. Так что это длина объекта, независимо от его ширины и глубины. Погонный метр маркируется аббревиатурой m.b. Погонный метр чаще всего используется для продукции, свернутой в рулоны. Так, погонные метры используются, например, для обоев, ограждающих сеток, тросов, минеральной ваты или кровельных материалов типа рубероида.Термин «погонный метр» также можно встретить в случае досок пола, панелей или даже окон. Перевод квадратных метров в погонные метры в каждом случае индивидуален. Это зависит от ширины изделия, в которой речь идет о погонных метрах. На этот раз в качестве примера возьмем ковер шириной 3 м. Нам нужно разместить его в комнате площадью 34 м2. Сколько погонных метров нам потребуется? Это очень простой расчет на уровне математики в начальной школе, и мы делаем его, разделив необходимое количество квадратных метров на ширину ковра, то есть:

34 м2 / 3м = 11,33 м.б)

Наш расчет показывает, что нам нужно 11,33 погонных метра ковра. Конечно, беря запас, он будет не менее 12 погонных метров.

Как видно из приведенных выше примеров для различных ситуаций, расчет квадратных метров представляет собой простое действие, основанное на базовой математике. Это умение очень пригодится во время всех ремонтно-строительных работ. Надеемся, что с нами вы легко посчитаете квадратные метры каждой поверхности, которую возьмете «в мастерскую».

См. также другие наши статьи с советами

.

Площадь круга и длина круга

Теорема

Площадь круга радиусом r равна:

Пример 1

Вычислим площадь круга диаметром 8 см .

Окружность диаметром 8 см имеет радиус длины r = 4 см (половина диаметра). Следовательно, площадь круга равна:

Пример 2

Найдите примерную площадь круга диаметром 2.

Если диаметр имеет длину 2, радиус окружности имеет длину 1. Используем формулу площади круга P = πr 2 = π · 1 2 = π≈ 3.14.

Площадь круга - калькулятор
Введите радиус круга и наш калькулятор рассчитает площадь круга.

Введите данные:

Радиус окружности: Вычислить площадь круга


Пояснения:
  • Если результат "бесконечность", он выходит за пределы диапазона, доступного для этого калькулятора.
  • Запись результата 1.2e + 12 означает число 1.2, умноженное на 10 12 .
  • Когда одно из полученных чисел больше, чем его 64-битное представление, калькулятор использует аппроксимацию результата.
  • Если указать действительное число, в расчете будет использоваться только целая часть.


Формула площади круга диаметром

Если мы дали диаметр круга d , то площадь круга вычисляется по следующей формуле:

P = πd 2

Длина круга

Длина окружности равна длине окружности.Приводим формулу длины окружности:

Теорема

Длина окружности с радиусом r равна:

Пример

Вычислим длину круга диаметром 1 м .

Круг диаметром 1 м имеет радиус r = 0,5 м (половина диаметра). Таким образом, длина окружности равна:

вопросов

Как вычислить площадь круга?

Если мы знаем длину радиуса, возводим ее в квадрат и умножаем на число π≈3,14.

Какова площадь круга?

Круг имеет нулевую площадь.

Задачи с решениями


Задачи по теме:
Площадь круга и длина круга

Задача - вычисление площади круга
Вычислить площадь круг диаметром

Показать решение задачи

Задача - длина окружности, вычисление длины окружности
Вычислить длину окружности диаметром d = 7

Показать решение задачи

Задача - площадь и радиус круга
Чему равен радиус круга с площадью 1?

Покажите решение задачи

Задача - Длина окружности
Сколько нужно нити, чтобы сделать из нее окружность диаметром 2 м?

Показать решение задачи

Задача - площадь круга
Площадь круга равна π.Чему равен радиус круга, площадь которого в два раза меньше? Вычислите отношение радиусов этих окружностей.

Показать решение задачи

Задача - площадь круга, практическое задание с содержанием
Из квадратной пластины со стороной 1 м вырезали круги радиусом r = 10 см так, что центры этих окружностей лежат на параллельных и перпендикулярных прямых. Какова площадь поверхности обрезков? Какой процент поверхности листа составляют обрезки?

Показать решение задачи

Задача - площадь круга, площадь квадрата, квадрат вписанный в круг
В круг радиусом r вписан квадрат.Вычислите площадь фигуры, которая является разницей между этим кругом и квадратом?

Показать решение задачи

Задача - треугольник, вписанный в окружность
Равносторонний треугольник со стороной а = 1 описывает окружность. Найдите длину окружности этого круга и площадь круга, определяемого этим кругом.

Показать решение задачи

Задача - Окружность, вписанная в равносторонний треугольник
Введен равносторонний треугольник с длиной стороны а = 1 окружности. Вычислите его площадь и длину окружности.

Показать решение задачи

Задача - окружность, описанная треугольником
Прямоугольный треугольник с катетами 3 и 4 описывает окружность. Вычислите площадь и длину окружности этого круга.

Показать решение задачи

Задача - длина окружности
Вычислить длину окружности, заданной уравнением

Показать решение задачи


Другие вопросы из этого урока окружность

Окружность с центром S и радиусом r — это набор точек на плоскости, расстояние от которых до точки S равно положительному числу r.

Взаимное положение окружностей

Описание случаев взаимного расположения окружностей.


Связанные викторины

Circle and Circle

Начальная школа
6 класс
Количество вопросов: 10

Circle и Circle

Card086.PDF
начальная школа
класс 6

© Mediana. 2010 -12-10, АРТ-1046


.

Площадь и периметр прямоугольника - Medianauka.pl

Площадь и периметр прямоугольника - Medianauka.pl

Как вычислить площадь прямоугольника?

Теорема

Площадь прямоугольника находится по формуле:

, где a, b — длины сторон прямоугольника.

В задаче будет использована приведенная выше формула площади прямоугольника.

Пример

Вычислите площадь прямоугольника со сторонами 10 и 5.

Решение: Дана длина стороны a = 5 и b = 10 . Так что применим непосредственно формулу площади прямоугольника:

Формула площади прямоугольника по диагонали

Теорема

Площадь прямоугольника находится по формуле:

, где d - длина диагонали прямоугольника, а - угол, образованный диагоналями друг с другом.

Вычислить поле Точность: 012345678 знаков после запятой Решение: Используем теорему Пифагора для вычисления второй стороны прямоугольника:

Преобразуем формулу, чтобы получить длину стороны b:

Используем формулу:
P = a b

Объяснение:
  • Если результат "бесконечность", это означает, что он находится за пределами диапазона, доступного для этого калькулятора.
  • Запись результата 1.2e + 12 означает число 1.2, умноженное на 10 12 .
  • Когда одно из полученных чисел больше, чем его 64-битное представление, калькулятор использует аппроксимацию результата.

Периметр прямоугольника

Теорема

Периметр прямоугольника находится по формуле:

, где a, b — длины сторон прямоугольника.

Мы будем использовать формулы площади и периметра прямоугольника в примерах задач.

Вопросы

Как вычислить площадь и периметр прямоугольника, если известны диагональ и одна из сторон?

В этом случае длину второй стороны определяем по теореме Пифагора и используем приведенные выше формулы.

Задачи с решениями


Задания связанные с темой:
Площадь и периметр прямоугольника

Задача - площадь прямоугольника
Сколько будет стоить купить напольную плитку для плана ванной представленного на чертеже , если принять 5% резерв на порезы и повреждения путем округления числа квадратных метров в большую сторону, а квадратный метр плитки стоит 45 злотых?

Показать решение задачи

Задача - площадь и периметр прямоугольника
Периметр прямоугольника равен 10, длина его диагонали.Вычислите площадь этого прямоугольника.

Показать решение задачи

Задача - площадь прямоугольника
Вычислить площадь прямоугольника с 10 диагоналями, образующими угол друг с другом 30 o

Показать решение задачи 6 Задача

4 - площадь прямоугольника
Площадь прямоугольника, диагонали которого образуют между собой угол 30 o , равна 16. Вычислите длину диагонали прямоугольника.

Показать решение задачи

.90 000 Благополучие животных - минимальные условия содержания лошадей 90 001

При оценке благополучия сельскохозяйственных животных потребуются и контролируются следующие критерии:

  • Обеспечение постоянного доступа к воде для животных (в загоне, на стойке, в загоне и на пастбище).
  • Минимальные размеры столбов и площади загона.
  • Правильная вентиляция и правильное освещение животноводческих помещений.
  • Надлежащий сбор, хранение и обращение с навозом.

1. Лошади в животноводческих помещениях должны содержаться на подстилке:

  • В боксах, площадь которых должна быть: на одну взрослую лошадь или жеребенка-отъемыша - не менее 10 м2; кобыла с жеребенком - не менее 12 м2.
  • На привязных стоянках, размеры которых при содержании взрослых лошадей сохраняются, до холки в высоту: до 147 см - шириной не менее 1,6 м и длиной не менее 2,1 м; свыше 147 см - шириной не менее 1,8 м и длиной не менее 3,1 м.
    Практически стойка рассчитывается отдельно для каждой породы: длина стойки = удвоенная косая длина туловища минус 10%, ширина стойки = высота в холке плюс 10 см.

2. Жеребцы и кобылы в возрасте старше лет содержатся отдельно.

3. В конюшне требования к микроклимату следующие:

  • Концентрация диоксида углерода не должна превышать 3000 ppm и сероводорода до 5 ppm, а концентрация аммиака не должна превышать 20 ppm
  • Влажность воздуха не должна превышать 80 %, скорость движения воздуха не должна превышать 0,3 м/с, а температура в стойле должна быть выше5°С.
  • Требования к освещению (отношение окна к полу) для лошадей старшего возраста 1:15, а для племенных и молодых лошадей до 1 года 1:10.

Прочие рекомендации по содержанию лошадей 9000 3

Хуже всего конюшни, потому что привязывать лошадей против их природы и запрещено во многих странах. Наиболее удобны боксы для одной или двух лошадей размером 4 х 4 м.Перегородки между лошадьми должны быть высотой 2,2 м, при высоте более 1,4 м перегородки должны быть ажурными, из толстых досок, с расстоянием между брусьями 6-7 см, чтобы лошадь не клала в нога. Хорошо, если боковые перегородки могут выдвигаться в кормовой коридор или открываться к стенам во время удаления навоза.

Каждый бокс должен быть оборудован желобом и поилкой, которые располагаются на высоте 0,8-1,0 м над уровнем пола.Поилка крепится на некотором расстоянии, чтобы лошадь не загрязняла ее кормом. К грубым кормам (сену, зеленому корму) прилагается подходящая лестница.

Двери короба не должны быть уже 1,3 м и высотой 2,2 м. Они должны открываться наружу на 180 градусов, желательно ажурные, а внизу должна быть вентиляционная решетка для удаления аммиака с пола бокса.

Лошади — животные длинного дня, им нужно много света и чистого воздуха. Поэтому конюшни должны быть высокими (3,5-4 м), хорошо освещенными и иметь хорошую вентиляцию. Дверь в конюшню должна быть четырехзаходной, чтобы верхняя часть открывалась как можно чаще. Внимание!!! Сквозняки вредны для лошадей.

Лошади требуют много упражнений. Для этого вам понадобится 20-50 м2 загона для взрослой лошади и ок.0,5 га пастбища.

В течение дня взрослая лошадь: мочится 5-12 раз в количестве от 5 до 10 литров и испражнений 9-10 кг, в среднем ей требуется: 5 кг концентрированных кормов (овес), 5 кг сена, 5 кг соломы и около 30 литров воды.

Подготовил: мгр инж. Станислав Нововейский 90 051 9000 3 .

Poczta Polska

Официальную, особенно деловую, корреспонденцию стоит отправлять заказным письмом - тогда можно будет не только отслеживать статус писем, но и получать подтверждение их получения (в традиционном бумажном или электронном виде) . Принимая решение о заключении договора с Poczta Polska, вы также определите точное место получения посылок или количество отправлений. Ваши адресаты получат письма в установленное время (самое короткое из всех операторов), в том числе до востребования или на свой абонентский ящик.Что немаловажно, как единственный оператор с таким многолетним опытом, мы доставим вашу корреспонденцию по всей стране - в том числе и в сельскую местность.

Чтобы сократить время обработки корреспонденции, вы также можете воспользоваться нашей корпоративной почтой и дополнительными услугами, такими как Печать и кондитерская . Если вы хотите иметь полный контроль над ходом отправления и отслеживать его статус, вас наверняка заинтересуют наши электронные решения - eINFO: pickup , eSENDER и eMONITROING .

Узнайте больше!
Наши консультанты горячей линии в вашем распоряжении с понедельника по пятницу с 8.00-20.00:

801 333 444 со стационарных телефонов (плата согласно прейскуранту оператора),

(+48) 438 420 600 со стационарных телефонов внутри страны и за рубежом (плата согласно тарифу оператора) список).

Сроки доставки
  • Приоритет - предполагаемая дата оказания услуги на следующий рабочий день после дня размещения (Д+1) при условии размещения до 15:00,
  • Экономический - ожидаемая дата оказания услуги через три рабочих дня после дня размещения (Д+3).

Ожидаемые даты оказания услуг не являются гарантированными сроками доставки.

Размеры

Размеры письменных отправлений:

МАКСИМАЛЬНО: сумма длины, ширины и высоты - 900 мм, наибольший из этих размеров (длина) не может превышать 6005 9000 мм,

МИНИМУМ: размеры адресной стороны не могут быть меньше 90 x 140 мм.

Размеры письменных отправлений, пересылаемых в виде рулонов, следующие:

МАКСИМАЛЬНО: сумма длин плюс двойной диаметр - 1040 мм, при наибольшем размере (длине) не более 900 мм,

МИНИМУМ: сумма длин плюс двойной диаметр - 170 мм, причем наибольший размер (длина) не может быть менее 100 мм.

ФОРМА S - отправления с размерами:

МИНИМАЛЬНЫЙ - размеры адресной стороны не могут быть меньше 90 х 140 мм,

МАКСИМУМ - ни один из размеров не может превышать: высота 20 мм, длина 230 мм, ширина 160 мм.

ФОРМА М - посылки с размерами:

МИНИМАЛЬНЫЕ размеры адресной стороны не могут быть меньше 90 х 140 мм,

МАКСИМАЛЬНЫЕ - ни один из размеров не может превышать: высота 20 мм, длина 325 мм, ширина 230 мм.

ФОРМАТ L - отправления с размерами:

МИНИМАЛЬНЫЙ - размеры адресной стороны не могут быть меньше 90 х 140 мм,

МАКСИМУМ - сумма длины, ширины и высоты 900 мм, наибольшая из эти размеры (длина) не могут превышать 600 мм.

Все размеры взяты с допуском +/- 2 мм.

Вес:

Содержание

Любую деловую корреспонденцию в бумажном виде Вы можете отправить заказным письмом.Он может быть написан вами от руки или распечатан. Вы можете поместить туда, среди прочего корреспонденция: корреспонденция компании, корреспонденция клиентам, подрядчикам или официальная корреспонденция.

Дополнительные услуги
  • Подтверждение доставки или возврата
  • Подтверждение квитанции
  • Электронное доказательство доставки - EINFO: квитанция

Скачать

Скачать

. торговля

Правила оказания универсальных услуг

Перечень городов к Правилам универсальных услуг

Перечень свидетельств о допуске франкировальных машин

Учреждения почтовой связи, принимающие посылки, подготовленные к отправке с помощью приложения Электронный отправитель

Бланки бланков

Отправка бланка

инкассо за посылку, доставленную на общих условиях

Подтверждение получения посылки, доставленной по правилам Административно-процессуального кодекса

Подтверждение получения доставленной посылки n

Ярлык подтверждения получения

Приоритетный ярлык

Уведомление/Повторное уведомление

Почтовая доверенность

Почтовая доверенность (интерактивная версия)

Запрос на отправку посылки

отправка посылок

отправка

хранение отправлений

Запрос на хранение отправлений (интерактивная версия)

Запрос на изменение договора

Запрос на изменение договора (интерактивная версия)

.

Смотрите также